Экспоненциальный рост численности. Законы силы в бизнесе Экспоненциальная скорость

Одним из величайших мифов, на котором зиждилась экономика конца двадцатого столетия, был миф экспоненциального роста. Предполагалось, что технологии будут меняться еще быстрее, так что экономика тоже будет расти по экспоненте, сделав нас всех богаче наших родителей и несоизмеримо богаче наших прадедов. Однако, похоже, с 2000 года все пошло не так, по крайней мере, в экономике. Проблема частично связана с оттоком капитала в развивающиеся рынки, ставшим возможным благодаря Интернету и современным коммуникациям. Однако за рамками даже этой неудобной реальности лежит по-настоящему тревожная мысль о том, что технический прогресс, и таким образом, возможность улучшения уровня жизни, может вовсе и не вызывать никакого экспоненциального роста.

В видении нескольких энтузиастов вера в экспоненциальный технический прогресс трансформировалась в сингулярность, которая либо уже происходит, либо вот-вот нас настигнет. Предполагается, что она приведет к дальнейшей акселерации прогресса, которая будет такой мощной, что будущее истории человечества будет очень сильно отличаться от прошлого.

Но перед тем, как приветствовать появление сингулярности, следует отметить, что, по мнению сторонников этой теории, она будет вызвана появлением более умных, чем люди, машин, которые впоследствии одержат верх, создадут еще более умных роботов и оставят человечество «в хвосте». Таким образом, сингулярность будет представлять собой не почти бесконечное улучшение качества жизни человечества, потому что, по-видимому, такие сверхразумные машины не особенно будут интересоваться уровнем жизни людей – или вообще захотят использовать нас как подопытных или домашних животных. (Если последнее, я, несомненно, окажусь в первых рядах претендентов на ликвидацию – вряд ли я обладаю качествами домашнего животного, регулярно проявляемых нашей кошкой Евдоксией).

Подумав логически, можно выделить три сингулярности, уже имевших место в истории человечества: появление речи, переход от кочевой жизни к оседлому сельскому хозяйству, а впоследствии Промышленная революция. Каждое из этих явлений десятикратно ускоряло развитие человечества, так что изменения, на которые под влиянием одной только эволюции уходили миллионы лет, после появления речи начали происходить за сотни тысяч лет, с изобретением земледелия – за десятки тысяч лет, и всего за два-три столетия – после Промышленной революции. Каждое из этих изменений совершенно меняло жизнь; она также двигалась в более быстром темпе, а после Промышленной революции за одну короткую человеческую жизнь происходят громадные технологические сдвиги.

Стоит подробнее остановиться на сингулярности Промышленной революции. Она продолжалась примерно 200 лет, и ни одна из ее первых инновация не привносила существенных жизненных изменений. Машина Ньюкомена (Newcomen) для откачки воды в шахтах, изобретенная в 1712 году, не привела к серьезным изменениям напрямую, за ней не последовало никакого намного более совершенного двигателя, как у Джеймса Ватта (James Watt) , до 1769 года (а двигатели Уотта вошли в широкое применение лишь в 1790-е годы). Однако технологическая революция сопровождалась столь же важной революцией в человеческом мышлении, которая началась примерно с основания Королевского научного общества в 1662 году и продолжилась «Богатством наций » Адама Смита (Adam Smith) (в 1776 году) до начала 19-го века.

Таким образом, даже несмотря на то, что гражданин 1785 года не особенно наслаждался техническими достижениями по сравнению с его предком из 1660 года, в то время как веком раньше алхимики высмеивались на картине знаменитого Джозефа Райта (Joseph Wright), сейчас она служит обложкой для «Алхимиков потерь ». Первые громадные технические плоды Промышленной революции появились позднее – текстильное производство приняло масштаб, только начиная с 1790-х годов, а сеть железных дорог появилась только после 1830 года – но умственные изменения, сформировавшие сингулярность, уже произошли к 1785 году или около того.

В этом смысле нам пока не грозит никакая сингулярность. Интернет, кардинально изменивший мировые коммуникации и наш образ жизни, является не более существенным революционным сдвигом, чем электрический свет, телефон или автомобиль. Жизнь в 2010 году на самом деле отличается от жизни в 1995 году. Сегодня мы можем организовать мировое производство или компанию по оказанию услуг намного эффективнее, чем в 1995 году. Большую часть жизни вне сна молодежь проводит в Интернете или в разговорах по мобильному телефону, что до 1995 года она делать не могла.

Однако так было и через 15-20 лет после появления предыдущих судьбоносных технологий. В 1845 году, после изобретения железных дорог, модель путешествий уже отличалась от модели 1830 года. В 1905 году, после изобретения электричества, городские модели работы в вечернее время и развлечений очень сильно отличались от моделей 1890 года. Подобно этому, жизнь в сельской местности Америки в 1925 году с появлением «Жестянки Лиззи» (Ford Model T) стала совершенно иной, чем в 1910 году.

Таким образом, каждое из этих изобретений кардинально меняло какие-то стороны жизненного уклада, но при этом они все же не ускоряли сам процесс изобретения и прогресс, как Промышленная революция. После распространения изобретений жизнь становилась другой, но темп технического прогресса был весьма умеренным. Интернет похож на инновацию подобного типа: он существенно изменил нашу жизнь, но не настолько ускорил изменения, как Промышленная революция, и предпосылок к этому нет. В самом деле, кто-то может справедливо возразить, что поколение, ставшее свидетелем большей части революционных изменений, жило во времена моей двоюродной бабушки Беатрисы, которая родилась в 1889 году и умерла в 1973 году. Во времена ее детства применялось газовое освещение и тягловые лошади, а в старости уже вовсю летали на самолетах и побывали на Луне.

В перспективе существуют три вероятных технологических достижения, потенциально способных ускорить темп изменений, даже если они не вызовут сингулярности. Это: создание машины умнее человека, открытие методов манипуляций с генами, способных увеличить когнитивные способности человека, а также открытия технического, медицинского или генетического характера, которые могут привести к значительному увеличению продолжительности человеческой жизни.

Возможность появления супер-робота считалась самой популярной причиной предполагаемой сингулярности, но при ближайшем рассмотрении оказывается, что это вряд ли приведет к ней. Приверженцы теории сингулярности любят цитировать закон Мура – теорию, предложенную Гордоном Муром (Gordon Moore) в 1965 году, согласно которой компьютерная скорость обработки данных удваивается каждые два года. Однако в реальности мы всерьез приближаемся к пределу этой прогрессии; сдерживающими факторами являются скорость света, энергия, требуемая для работы микропроцессоров (которые выделяют тепло), длина волны электромагнитного излучения и размер атомных структур.

Через пару поколений по закону Мура мы приблизимся к временному барьеру, который существенно усложнит прогресс, а через 5-6 поколений по этому же закону – к барьеру постоянному, за которым при вообразимых на данный момент технологиях прогресс будет невозможен. Нужно признать, что дальнейший прогресс в сфере компьютерного интеллекта реализуем путем улучшения программирования и архитектуры с массовым параллелизмом, но реальность такова, что после прогресса 2015-2020 годов в этой области начнется существенное ЗАМЕДЛЕНИЕ, а не ускорение. Так же как и последним, действительно революционным изменением в дизайне автомобилей было изобретение автоматической трансмиссии в 1939 году, очевидно, бесконечный прогресс в машинном проектировании постепенно достигнет естественного предела.

Генная инженерия с целью улучшения умственных способностей человека, несомненно, изменит наш мир, но это, вероятно, случится очень нескоро, потому что таким изменениям будут резко противостоять большинство западных религиозных групп и правительств. Даже простое клонирование, которое является простым воспроизведением существующей особи, не намного продвинулось за десять лет, и может задержаться в развитии на целое поколение в будущем. Даже с разрешением правительств могут быть проведены проверки на безопасность, необходимые перед началом экспериментов по расширению интеллектуальных возможностей, существует вероятность того, что первые подобные испытания просто приведут к увеличению умственных способностей до существующего уровня, а не к их расширению. Кроме того, из-за биологической потребности этих детей в созревании до 15-летнего возраста, получения высшего образования в течение последующих 5-10 лет, результат этих изменений проявится не ранее чем через 50 лет в будущем. В этом смысле супер-робот, будь он реальным, может быть создан быстрее, так как он сразу будет взрослым! Учитывая тот факт, что первые экземпляры Улучшенного Человека будут составлять ничтожную часть человеческой/новой человеческой расы, становится очевидно, что никакого макро-ускорения отсюда не следует ожидать до следующего века.

Третья потенциальная технология, продление жизни, уже интереснее. Технически любой существенный эффект (помимо медицинских достижений, увеличивающих процент людей, доживающих до 90-100 лет), скорее всего, потребует подобных умений для производства жизни с более высоким уровнем интеллекта. Однако эта сфера столкнется с гораздо меньшим сопротивлением луддитов со стороны политиков и религиозных лидеров, так как преимущества более длинной жизни очевидны и теоретически универсальны. С другой стороны, увеличивать продолжительность жизни уже живущих будет гораздо сложнее, чем создавать новых людей-долгожителей, и скорее всего, это произойдет позднее.

Получается, что к 2050 году мы, вероятно, получим возможность рожать детей, которые будут жить 150-200 лет (то есть дольше, чем потребуется для обретения возможности преодолеть сдерживающие факторы, о которых мы еще не знаем, потому что они не затрагивают не-долгожителей). Через какое-то время после этого мы научимся хотя бы частично увеличивать продолжительность жизни уже существующих людей. Учитывая потенциальный массовый спрос на подобные технологии, они должны быстро распространиться среди большинства людей, так как массовое производство позволит снизить их стоимость до допустимого уровня.

Однако в то время как увеличение жизненного цикла намного улучшит жизнь человека, оно не ускорит прогресс. Долгожители не приступят к работе, по крайней мере, до 25 лет, потому что они будут получать более всестороннее образование, чем мы. Выйдя на работу, они будут менее склонны к риску и терпеливее нас, так как запаздывание будет поглощать меньшую часть оставшейся жизни. В свою очередь, даже без дальнейшей акселерации, им потребуется повторное образование каждые 20-25 лет, чтобы их рабочие навыки не успели безнадежно устареть. Так как расходы для них в условиях быстрых изменений будут больше, чем для нас, а преимущества – меньше, они сами захотят замедлить прогресс. Только в сочетании с более высоким уровнем интеллекта они будут способны принять головокружительный послереволюционный темп изменений.

На данный момент я рассматривал возможную акселерацию положительных изменений. Однако существует возможность катастрофически негативных перемен, которые способны вернуть цивилизацию, уровень жизни и знания на более примитивную ступень. Одним из возможных источников этого является мировая война, возможно, отличная от той, что была 50 лет назад. Еще одним фактором может быть экологическая катастрофа. Здесь ничего хорошего не предвидится. Нынешний неотвратимый рост населения, который, очевидно, замедлится, но не прекратится к 2050 году, усугубится открытиями, которые привели к росту продолжительности жизни до 200 лет, как из-за снижения количества смертей, так и из-за увеличения рождаемости благодаря тому, что способность к воспроизведению будет сохраняться в течение 100 лет. Является глобальное потепление серьезной проблемой в мире с населением от 7 до 10 млрд, еще вопрос, но оно, несомненно, превратится в серьезную проблему в мире с населением в 20 млрд человек (и истощение ресурсов будет, соответственно, представлять собой более реальную опасность). Соответственно, основным приоритетом должны быть меры для замедления роста населения или, даже лучше, возврата к сокращению. В конце концов, до последней сингулярности мировое население составляло всего 1 млрд; при таком уровне наши проблемы с окружающей средой и ресурсами исчезли бы.

Помимо возможности коллапса, две или три вероятных технологических разработки следующих 50 лет – достижение предела Закона Мура и увеличение продолжительности жизни – скорее, замедлят темп изменений, нежели ускорят его. Только третий вариант – генетически улучшенный интеллект – обладает потенциалом к ускорению прогресса, но системное противостояние этой технологии, вероятно, задержит ее очень надолго. Кривая развития человечества в 21-м веке, таким образом, будет асимптотической [ограниченной], а не экспоненциальной.

Выражение «экспоненциальный рост» вошло в наш лексикон для обозначения быстрого, как правило безудержного увеличения. Оно часто используется, например, при описании стремительного роста числа городов или увеличения численности населения. Однако в математике этот термин имеет точный смысл и обозначает определенный вид роста.

Экспоненциальный рост имеет место в тех популяциях, в которых прирост численности (число рождений минус число смертей) пропорционален числу особей популяции. Для популяции человека, например, коэффициент рождаемости примерно пропорционален количеству репродуктивных пар, а коэффициент смертности примерно пропорционален количеству людей в популяции (обозначим его N ). Тогда, в разумном приближении,

прирост населения = число рождений — число смертей

(Здесь r — так называемый коэффициент пропорциональности , который позволяет нам записать выражение пропорциональности в виде уравнения.)

Пусть dN — число особей, добавившихся к популяции за время dt , тогда если в популяции в общей сложности N особей, то условия для экспоненциального роста будут удовлетворены, если

dN = rN dt

После того как в XVII веке Исаак Ньютон изобрел дифференциальное исчисление, мы знаем, как решать это уравнение для N — численности популяции в любое заданное время. (Для справки: такое уравнение называется дифференциальным .) Вот его решение:

N = N 0 e rt

где N 0 — число особей в популяции на начало отсчета, а t — время, прошедшее с этого момента. Символ е обозначает такое специальное число, оно называется основание натурального логарифма (и приблизительно равно 2,7), и вся правая часть уравнения называется экспоненциальная функция .

Чтобы лучше понять, что такое экспоненциальный рост, представьте себе популяцию, состоящую изначально из одной бактерии. Через определенное время (через несколько часов или минут) бактерия делится надвое, тем самым удваивая размер популяции. Через следующий промежуток времени каждая из этих двух бактерий снова разделится надвое, и размер популяции вновь удвоится — теперь будет уже четыре бактерии. После десяти таких удвоений будет уже более тысячи бактерий, после двадцати — более миллиона, и так далее. Если с каждым делением популяция будет удваиваться, ее рост будет продолжаться до бесконечности.

Существует легенда (скорее всего, не соответствующая действительности), будто бы человек, который изобрел шахматы, доставил этим такое удовольствие своему султану, что тот пообещал исполнить любую его просьбу. Человек попросил, чтобы султан положил на первую клетку шахматной доски одно зерно пшеницы, на вторую — два, на третью — четыре и так далее. Султан, посчитав это требование ничтожным по сравнению с оказанной им услугой, попросил своего поданного придумать другую просьбу, но тот отказался. Естественно, к 64-му удвоению число зерен стало таким, что во всем мире не нашлось бы нужного количества пшеницы, чтобы удовлетворить эту просьбу. В той версии легенды, которая известна мне, султан в этот момент приказал отрубить голову изобретателю. Мораль, как я говорю моим студентам, такова: иногда не следует быть чересчур умным!

Пример с шахматной доской (как и с воображаемыми бактериями) показывает нам, что никакая популяция не может расти вечно. Рано или поздно она попросту исчерпает ресурсы — пространство, энергию, воду, что угодно. Поэтому популяции могут расти по экспоненциальному закону лишь некоторое время, и рано или поздно их рост должен замедлиться. Для этого нужно изменить уравнение так, чтобы при приближении численности популяции к максимально возможной (которая может поддерживаться внешней средой) скорость роста замедлялась. Назовем эту максимальную численность популяции K . Тогда видоизмененное уравнение будет выглядеть так:

dN = rN (1 — (N /K )) dt

Когда N намного меньше K , членом N/K можно пренебречь, и мы возвращаемся к первоначальному уравнению обычного экспоненциального роста. Однако когда N приближается к своему максимальному значению K , значение 1 — (N /K ) стремится к нулю, соответственно стремится к нулю и прирост численности популяции. Общая численность популяции в этом случае стабилизируется и остается на уровне K . Кривая, описываемая этим уравнением, а также само уравнение, имеют несколько названий — S-кривая , логистическое уравнение , уравнение Вольтерры , уравнение Лотки—Вольтерры . (Вито Вольте рра, 1860-1940 — выдающийся итальянский математик и преподаватель; Альфред Лотка, 1880-1949 — американский математик и страховой аналитик.) Как бы она ни называлась, это — достаточно простое выражение численности популяции, резко возрастающей экспоненциально, а затем замедляющейся при приближении к некоему пределу. И она гораздо лучше отражает рост численности реальных популяций, чем обычная экспоненциальная функция.

Когда снежный ком катится с горы, он постоянно увеличивается. Чем больше он становится, тем быстрее катится, чем быстрее катится, тем быстрее растет.

Математики и физики очень любят описывать мир при помощи чисел. А еще больше - при помощи функций. Функция - это правило, по которому одному числу (например, x ) ставится в соответствие другое (например y ). Функции бывают простые, вроде y=10x или y=x 2 , а бывают посложнее вроде y=10*sin(7x2+3x-9) . Если вместо x и y подставить определенные физические параметры и найти функцию, которая их связывает, то получится закон природы.

Еще у функций есть производная. Это - скорость изменения функции. То есть то, насколько изменится y при небольшом изменении x . Например, в случае функции y=10x производная всегда постоянная: y всегда будет расти в 10 раз быстрее, чем x . А в случае функции y=x 2 производная будет меняться. Если мы увеличим x c 0 до 1, то y тоже увеличится с 0 до 1. А если увеличим x с 1 до 2, то y увеличится с 1 до 4. То есть, производная с ростом x увеличилась.

Экспонентой называется функция y=e x , где e - хитрое математическое число, которое примерно равно 2,72. Она обладает замечательным свойством: ее производная равна ей самой. То есть, если расстояние, которое проходит снежный ком, зависит от времени как экспонента, то и его скорость выражается той же самой экспонентой. Это свойство очень помогает математикам решать разные дифференциальные уравнения. Они очень любят с ней работать и стараются разные другие функции путем сдвига, растяжения, или переворачивания графика превратить в экспоненту. Все такие функции можно назвать экспоненциальными. У экспоненциально протекающих процессов есть одно общее свойство: за одинаковый интервал времени их параметры меняются в одинаковое число раз. Банковский вклад каждый год увеличивается на 7%, снежный ком за минуту увеличивается в три раза, а количество урана-235 на атомных электростанциях уменьшается вдвое каждые 700 миллионов лет. Экспоненциальные функции окружают нас повсюду. Экспоненциально развиваются все явления, в которых присутствует обратная связь, когда результат влияет на скорость процесса. В случае со снежным комом обратная связь положительная: чем больше результат, тем быстрее протекает процесс. А масса и скорость снежного кома y экспоненциально возрастают со временем x . Аналогично ведут себя деньги в банке при фиксированной процентной ставке. Чем больше денег, тем больше ежегодный прирост - и тем быстрее денег хватит на домик на Мальдивах. Так же увеличивается численность животных при отсутствии внешних угроз: чем больше популяция, тем больше размножающихся особей, тем быстрее она увеличивается. А еще, когда микрофон подносишь близко к динамику, то самый тихий шорох через секунду превратится в звонкий гул.

Бывает, что обратная связь отрицательная: чем больше результат, тем медленнее идет процесс. Например, когда мы голодны, мы начинаем быстро поглощать еду, но как только чувство голода уменьшается, мы начинаем есть спокойно, потом лениво доедаем десерт. Чай остывает тоже по экспоненте: чем больше разность температур между чаем и воздухом, тем быстрее он остывает. Так что, если вам надо срочно отвлечься на 15 минут, а горячего чаю выпить хочется - налейте в него холодного молока или воды. Тогда разница температур уменьшится, и чай не остынет так быстро, как если бы он был горячим.

Чем быстрее движется струна гитары, тем быстрее она тормозится о воздух, поэтому громкость звука после дерганья за струну экспоненциально уменьшается. Еще один пример - ядерный распад. Каждое ядро может распасться в случайный момент времени, но чем ядер больше, тем больше распадов будет происходить за одну минуту. Чем быстрее ядра распадаются, тем меньше их становится, а значит и интенсивность радиации со временем падает.

Экспоненциальная зависимость представляет собой математическую функцию, которая является полезной для описания процесса, где быстро увеличивается или быстро уменьшается количество каких-либо элементов. Существует множество примеров использования этой зависимости в биологии, физике, экономике, медицине и других сферах человеческой деятельности.

Определение экспоненциальной зависимости

Для того чтобы понимать, что означают слова "это количество растет экспоненциально" или "этот процесс характеризуется экспоненциальным спадом", необходимо рассмотреть понятие самой экспоненциальной функции. Для этого возьмем некоторое положительное число "a", которое не равно 1, и возведем его в степень "x", при этом переменная x может иметь как положительные, так и отрицательные значения, но не должна равняться нулю. Также возьмем некоторое постоянное число k (константа), которое не равно нулю. Теперь введем математическую функцию f(x) = k*a x . Возведение в степень "x" положительного числа "a" - это экспоненциальная зависимость, а сама функция f(x) называется показательной. В функции f(x) число "a" называется основанием, а "x" - это независимая переменная.

Отметим, что в математике часто фигурирует основание экспоненциальной функции "a", которое приблизительно равно 2,718. Это число обозначается латинской буквой "e" и называется числом Эйлера. Отмеченное число играет важную роль в математической теории пределов, а также во многих физических процессах в природе, например, давление воздуха с высотой на нашей планете уменьшается по экспоненциальному закону, в которого основанием выступает число Эйлера.

График экспоненциальной зависимости

Рассмотрим свойства экспоненциальной функции y = a x , для этого обратимся к графику, представленному выше. Первым важным свойством является то, что каким бы основанием "a" ни была представлена функция, она всегда будет проходить через точку с координатами (0,1), поскольку a 0 = 1.

Из графика экспоненциальной зависимости также видно, что функция a x для любых значений переменной "x" принимает только положительные значения. При больших отрицательных значениях "x" функция быстро приближается к оси абсцисс, то есть стремится к нулю. В свою очередь, уже при небольших положительных значениях "x" функция резко возрастает, при этом скорость ее увеличения постоянно увеличивается также по экспоненциальному закону, что можно показать, если взять производную от рассматриваемой функции ((a x)" = ln(a)*a x , где ln(a) - натуральный логарифм).

Таким образом, экспоненциальная зависимость - это резкое изменение некоторой величины как в сторону ее увеличения, так и в сторону уменьшения.

Пример из шахматной истории

Хорошей демонстрацией значимости экспоненциального увеличения объектов является древняя легенда, связанная с изобретением шахмат. Согласно этой легенде, для развлечения одного индусского короля, которого звали Белкиб, его близкий друг Брахман Сисса за 3000 лет до нашей эры придумал настольную игру шахматы.

Король так рад был новой игре, что пообещал дать Сиссе все, что тот пожелает. Тогда Брахман Сисса предложил ему дать столько зерна, сколько поместится на 64 шахматных клетках, при этом на 1-ю клетку он положил 1 зерно, на 2-ю - 2 зерна, на 3-ю - 4 зерна и так далее, удваивая каждый раз число. Белкиб сразу не понял, насколько много ему потребуется отдать зерна, поэтому принял без размышлений предложение своего друга.

Количество зерен, которое помещается на шахматной доске согласно описанному принципу, составит 2 64 = 18 446 744 073 709 551 616 - гигантское число!

Рост населения планеты

Еще одним ярким примером процессов, которые описываются согласно экспоненциальной зависимости, является рост населения планеты. Так, в 1500 году население планеты составляло около 500 млн., в 1800 году, то есть через 300 лет, оно удвоилось и стало равно 1 млрд., прошло менее 50 лет, и население планеты перешагнуло отметку 2 млрд, в настоящее время количество жителей на планете Земля составляет 7,5 млрд. человек.

Описанный на примере человечества рост популяции характерен для любого биологического вида, будь то млекопитающее или одноклеточная бактерия. Математически этот рост описывается следующей формулой: N t = N 0 *e k*t , где N t и N 0 - численность популяции в моменты времени t и нулевой, соответственно, k - некоторый положительный коэффициент. Данная математическая модель роста популяций получила название экспоненциальной зависимости в экологии.

Экспоненциальный рост населения планеты заставил задуматься еще в начале XIX века известного английского экономиста и демографа Томаса Роберта Мальтуса. Ученый в свое время предсказывал, что в середине XIX века на Земле должен будет наступить голод, поскольку производство продуктов питания увеличивается линейно, в то время как численность людей на планете увеличивается экспоненциально. Мальтус полагал, что единственным способом достигнуть равновесия в рассматриваемой системе, является массовая смертность, вызванная войнами, эпидемиями и другими катаклизмами.

Как известно, ученый ошибся в своих мрачных предсказаниях, по крайней мере он ошибся с указанной датой.

Возраст археологических останков

Еще одним ярким примером природных процессов, которые происходят согласно экспоненциальному закону, является распад радиоактивных элементов. Это физическое явление, которое заключается в превращении ядер тяжелых элементов в ядра более легких, описывается следующей математической формулой: N t = N 0 *e -k*t , где N t и N 0 - количество ядер более тяжелого элемента в момент времени t и в начальный момент соответственно. Из этой формулы видно, что она практически аналогична таковой для роста биологической популяции, единственное отличие заключается в знаке "минус" в показателе экспоненты, который говорит об убыли тяжелых ядер.

Отмеченную формулу используют для определения возраста горных пород и окаменелых организмов. В последнем случае работают с изотопом углерода 14 C, поскольку его период полураспада (время, за которое начальное число тяжелых ядер уменьшится вдвое) является относительно небольшим (5700 лет).

Другие процессы, подчиняющиеся экспоненциальному закону

Экспоненциальная зависимость описывает многие процессы в экономике, химии и медицине. Например, дозы медикаментов, попавших в организм человека, уменьшаются во времени по экспоненциальному закону. В экономике инвестиционная прибыль, исходя из определенного начального капитала, рассчитывается также по экспоненциальному закону.

Экспоненциальный рост

Когда Альберта Эйнштейна попросили назвать самую могучую силу на свете, он без колебаний ответил: «Сложные проценты».

Для того чтобы действительно понять природу и последствия длительного периода роста, нужно быть гением. Эксперименты показали, что даже образованным и хорошо разбирающимся в математике людям свойственно значительно недооценивать результаты роста. Например, в ходе одного исследования* испытуемых попросили оценить необходимую производительность тракторного завода, который начал работать в 1976 году с выпуска 1000 тракторов в год, после чего каждый год спрос увеличивался на 6 процентов. Сколько тракторов, спрашивали их, завод должен будет производить в 1990, 2020, 2050 и 2080 годах? Типичные ответы базировались на постепенном линейном увеличении, и поэтому оценки спроса до 1990 года были достаточно близки к правильному ответу. Но последующие цифры правильных ответов подскакивали «экспоненциально», в то время как оценки отвечающих продолжали основываться на стабильном приросте. Большинство респондентов ответили, что в 2080 году спрос составит около 30 000 тракторов, в то время как правильный ответ около 350 000, что в 10 с лишним раз больше!

А теперь отгадайте загадку. В пруду площадью 13 тысяч кв. футов плавает один лист кувшинки, занимающий площадь в 1 кв. фут. Через неделю листьев уже два. Через две недели четыре. Посчитайте, сколько времени понадобится кувшинкам, чтобы покрыть весь пруд.

Через 16 недель они покроют половину пруда. А теперь скажите, сколько еще пройдет времени, пока весь пруд не будет покрыт кувшинками? Для того чтобы покрыть половину пруда, кувшинкам понадобилось 16 недель. Но вот чтобы закрыть вторую половину, достаточно будет одной недели, так как площадь листьев каждую неделю удваивается. Окончательный ответ -17 недель.

* См.: ^ Дитрих Дернер. Логика неудачи: почему дела идут плохо и что мы можем сделать, чтобы их поправить (Dietrich Dorner. The Logic of Failure: Why Things Go Wrong and What We Can Do to Make Them Right. 1996, Metropolitan Books, New York). Оригинал опубликован в Германии в 1989 году под названием «Die Logik des Misslingcns» издательством Rowohlt Verlag.

А помните басню про индийского короля, который захотел наградить изобретателя шахмат? Изобретатель попросил всего лишь несколько зернышек риса: на одну клетку положить одно, на вторую два, на третью четыре, и так далее на все остальные клетки. Король думал, что мудрец поскромничал, - пока не выяснилось, что только на одну последнюю клетку пришлось бы положить 9 223 372 036 000 000 000 зерен, или около 153 миллиардов тонн, или больше двух с половиной миллионов огромных (по 60 000 тонн) сухогрузов, до самых бортов заполненных рисом. А всему виной «экспоненциальный» рост, в данном случае удвоение зерен риса на каждой клетке.

^ В чем суть экспоненциального роста?

Экспонента - это число, показывающее, сколько раз какая-то величина должна быть умножена сама на себя. Например, если экспонента равна 3, а величина 4, то выражение 4 3 означает 4 х 4x4, что составит 64. Математическое выражение у 2 означает у ху , а число 2 - это экспонента.

Чем экспоненциальный рост отличается от линейного? При линейном росте величина увеличивается на каждом этапе на одно и то оке, а не на кратное число. Если мой стартовый капитал составляет 1000 долларов и каждый год увеличивается на 100 долларов, то через 10 лет я его удвою и буду иметь 2000 долларов. Вот это и есть линейный рост, на одну и ту же сумму каждый год. Но если мой стартовый капитал в 1000 долларов каждый год будет увеличиваться на 10 процентов, то через десять лет у меня будет 2594 доллара. Это пример экспоненциального роста с постоянным кратным числом ежегодного увеличения 1,1. Если же я буду продолжать свой бизнес еще 10 лет, то линейный рост даст мне общую сумму 3000 долларов, в то время как экспоненциальный - 6727 долларов.

Любой рынок или бизнес, поддерживающий уровень роста 10 процентов или больше на протяжении длительного периода времени, получит гораздо больший эффект с плане создания стоимости, чем мы интуитивно оцениваем. Некоторые компании- такие как IBM или McDonald"s за период с 1950 по

1985 год или Microsoft в 1990-х годах- сумели обеспечить уровень роста, превышающий 15 процентов в год, и во много раз увеличили свои капиталы. Если вы начнете со 100 долларов и в течение 15 лет будете увеличивать капитал на 15 процентов в год, то в конце у вас будет уже 3292 доллара, то есть почти в 33 раза больше, чем в начале. Незначительное увеличение процента роста приводит к большой разнице в результатах.

К примеру, американский биржевой брокер Уильям О"Нил создал для своих одноклассников фонд и управлял им с 1961 по 1986 год. За это время первоначальные 850 долларов превратились в сумму 51 653 доллара после выплаты всех налогов*. За 25 лет средний рост составил 17,85 процента в год, что выразилось в увеличении первоначальной суммы в 61 раз. Таким образом, мы видим, что если за 25 лет 15-процентный рост увеличивает капитал в 33 раза, то добавление меньше чем 3 процентных пунктов к темпам годового прироста увеличивает результат в 61 раз.

Экспоненциальный рост меняет вещи не только количественно, но и качественно. Например, при быстром росте индустрии - Питер Дрюкер называет цифру 40 процентов за 10 лет - меняется сама ее структура, и на первый план выходят новые лидеры рынка. Быстрому росту рынков способствуют новаторство, отсутствие закономерности, новые продукты, технологии или потребители. Новаторы по определению ведут дела не так, как все. Новые способы редко уживаются с привычками, идеями, процедурами и структурами существующих фирм. Новаторы нередко получают возможность снимать пенки на протяжении нескольких лет, пока традиционные лидеры не решат пойти в контратаку, но тогда может быть уже поздно.

^ Кролики Фибоначчи

Хочу предложить вам любопытную загадку на тему экспоненциального роста. В 1220 году Леонардо Пизанский, получивший 600 лет спустя прозвище «Фибоначчи», придумал следую-

* ^ Уильям Дж. О "Нил. Как делать деньги на биржах (William J. О "Neil. How to Make Money in Stocks. 1991, McGraw-Hill, New York. P. 132).

щий сценарий. Начнем с пары кроликов. Затем представим, что каждая пара через год производит на свет другую пару, а через год - еще одну. После этого кролики становятся слишком старыми для размножения. Как будет увеличиваться количество пар, и есть ли в этой модели что-нибудь замечательное?

Если хотите, можете составить последовательность ежегодного количества пар самостоятельно, но можете посмотреть ответ сразу:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

Не замечаете ничего необычного?

Собственно говоря, тут есть два интересных момента. Один заключается в том, что начиная с третьей, каждая последующая цифра является суммой двух предыдущих. Второй состоит в том, что отношение числа каждого года (после третьего) к числу предыдущего составляет практически постоянный коэффициент, который вскоре приближается к 1,618. Другими словами, тут наблюдается постоянная скорость прироста, составляющая чуть больше 60 процентов.

Со временем загадка ^ Кроликов Фибоначчи получила исчерпывающее математическое объяснение, но, к счастью, тут нет для него места*. Тем не менее эти кролики являются прекрасной иллюстрацией экспоненциального роста, равно как и того факта, что даже такой явно ограниченный рост не может продолжаться слишком долго. Через 144 года объем кроликов Фибоначчи превысит объем Вселенной, и все люди погибнут, задохнувшись под пушистой массой. Вот уж действительно притянуто за уши!

^ Большой Взрыв

Другая, более экстремальная форма экспоненциального роста, возможно, лежит в основе возникновения Вселенной. В наши дни практически все астрономы и физики согласились с Теорией Большого Взрыва, согласно которой Вселенная началась

* Любители математики могут полистать книгу Питера М. Хиггинса «Математика для любознательных» (Peter M. Higgins. Mathematics for the Curious. 1998, Oxford University Press, Oxford).

с невообразимо малого объема, а потом за долю секунды 100 раз удвоила свои размеры, что сделало ее похожей на небольшой грейпфрут. Затем этот период «вспучивания», или экспоненциального роста, закончился, уступив место линейному росту, в ходе которого расширяющийся огненный шар создал сегодняшнюю Вселенную.

Экспоненциальный рост - это неотъемлемая составляющая творчества любого рода. Интересный урок состоит в том, что при экспоненциальном росте не нужно начинать с чего-то большого. По сути дела, начать можно с самого малого. Если Вселенная могла возникнуть с чего-то настолько малого, что мы не можем себе этого представить, и расширилась до своих сегодняшних невообразимо бесконечных размеров, то фактор первоначальных размеров нового бизнеса следует признать не имеющим совершенно никакого значения. Ключевой показатель - это период экспоненциального роста, за которым следует более длительный период линейного роста.

^ Выводы из концепции роста

Самые лучшие возможности творчества и роста возникают в периоды нарушения равновесия или, иными словами, в момент достижения точки опрокидывания и сразу после него.

Нарушения равновесия и точки опрокидывания не происходят внезапно. Всегда существует период, иногда достаточно долгий, предварительной разминки, когда существующая система выказывает признаки нестабильности, а новая спокойно набирает силу. Во всем, что касается новых технологий или видов продукции, точка опрокидывания достигается только после того, как новшество получает «прописку» на массовом рынке. Это означает, что его продажа должна основываться на традиционных критериях выгоды, а революционная сущность перемены (если она есть) должна быть закамуфлирована.

Периоды стремительных изменений и высокого экспоненциального роста обычно не длятся долго. Пройдет немного времени, как установится новое равновесие с новой господствующей технологией и/или новой конкурентной ситуацией. Отсюда ощущение увлекательности и необычной неуверенности, связанное с периодами нарушения равновесия. Отсюда же те исключительные выгоды, которые извлекают люди, сумевшие в этот короткий период захватить господствующие позиции. Такое господство скорее является результатом искусного маркетинга и позиционирования, чем превосходства самой технологии.

Большинство новаторов терпят поражение. Чтобы оседлать успех, они должны «преодолеть пропасть» - или перейти точку опрокидывания - и внедриться на массовый рынок. Ключевым фактором тут является ускорение. Пока новая продукция или технология не начнет стремительно размножаться, у нее мало шансов на выживание.

^ Закон экономического арбитража Сэя

В 1803 году французский экономист Жан-Батист Сэй (1767- 1832) опубликовал замечательную работу «Трактат о политической экономии». Томас Джефферсон отозвался о ней так:

«Превосходный труд... блестящая компоновка, четкие идеи, ясный слог, а вся работа в два раза тоньше, чем книга [Адама] Смита"*.

В трактате содержалось множество поразительных новшеств, включая термин «entrepreneur» (предприниматель) и сформулированную в том же самом предложении первую теорию экономического арбитража.

Предприниматель перемещает экономические ресурсы из области с более низкой производительностью в область с более высокой производительностью и извлекает из этого выгоду.

Задолго до распространения понятия доходности капитала Сэй назвал один из наиболее важных двигателей экономического творчества и прогресса. Ресурсы по определению ограниченны, поэтому рост зависит не столько от разведки и эксплуатации природных ресурсов, сколько от возможности более пол-

* Томас Джефферсон в письме Джозефу Миллигану, 6 апреля 1816 года. Это превосходная статья, и я использовал ее в своем докладе.

ного использования каждой единицы ресурса. Отчасти это функция более совершенных технологий и методик, но нельзя сбрасывать со счетов умение предпринимателя доставить эти ресурсы туда, где они окажутся наиболее продуктивными.

^ Принцип реальности Фрейда

В 1900 году Зигмунд Фрейд (1856-1939) выпустил в свет «Толкование сновидений» и основал новую науку психоанализа. Одной из его ключевых концепций был Принцип реальности, утверждающий, что от использования других людей в корыстных целях нас удерживает только то, что они стремятся сделать то же самое с нами. Сталкиваясь с реальностью (действительностью), мы вынуждены приспосабливаться к потребностям других людей и требованиям внешнего мира, чтобы иметь возможность удовлетворить собственные инстинкты.

Концепция Фрейда определенно имеет большую ценность, но довольно неожиданный поворот той же идее придал его современник, драматург Джордж Бернард Шоу:

«Разумный человек приспосабливает себя к миру [в соответствии с принципом реальности Фрейда]: неразумный человек настойчиво пытается приспособить мир к себе. Следовательно, любой прогресс зависит от человека неразумного «.

Творчество и предпринимательство требуют подпитки новыми идеями, новыми методами и неразумными подходами. Вел ли себя разумно Генри Форд, когда настаивал на том, что автомобили должны быть доступны рабочему человеку? Он явно не следовал за спросом, так как спрос на автомобили существовал только среди богатых. Форд отказался согласиться с тем миром, который существовал вокруг него; он продолжал попытки подстроить мир под свое видение. Используя конвейер и максимальную стандартизацию, Форд снизил стоимость модели Т с 850 долларов в 1908 году до 300 долларов в 1922 году и преуспел в своей миссии «демократизации автомобиля».

^ Преуспевающий предприниматель

Книга Бытия и теория Большого Взрыва сходятся в одном: было только одно первоначальное сотворение мира. Следовательно, прогресс - это всего лишь перестановка слагаемых. Ничто не ново под луной.

Такую точку зрения никак нельзя считать мрачной, и это обнадеживает. Все, чего не хватает человеческому благосостоянию, это взять определенный набор ресурсов и переместить их из областей с низкой продуктивностью в области с высокой продуктивностью.

Весь экономический прогресс основан на экономическом арбитраже данного типа. Это хорошая новость. Заниматься арбитражем легче, чем творчеством. Каждый должен быть способен придумать что-нибудь такое, что может получить выгоду от экономического арбитража, от выявления ресурсов, которые можно использовать с большей эффективностью.

Истинные предприниматели не ждут, пока исследователи рынка скажут им, что делать. У них есть свое видение того, как сделать что-нибудь лучше и по-иному. Они разрабатывают способы достичь большего меньшими усилиями. Они меняют менее доходные варианты использования ресурсов на более доходные и продолжают оставаться настойчивыми и неразумными, пока мир не примет их точку зрения.

^ Закон убывающей доходности

Одной из наиболее влиятельных и популярных концепций работы рынков и предприятия является Закон убывающей доходности, который сформулировал примерно в 1767 году французский экономист Робер Жак Тюрго.

Закон гласит, что после определенного момента доходность дополнительных усилий или инвестиций уменьшается, то есть уменьшается прирост стоимости. Для голодного человека булка хлеба имеет очень большую ценность. Ценность второй булки меньше. Десятая уже не будет иметь почти никакой цены. Если вы наймете дополнительно несколько крестьян для обработки одного участка земли, то после определенной точки вступит в действие закон убывающей доходности.

Через сто лет британские классические экономисты, лидером которых был Альфред Маршалл, распространили эту идею на рынки и фирмы. Лидирующие на рынке продукты или компании попадают в ловушку убывающей доходности. Цена крупных размеров в бизнесе - большой рыночной доли, крупной фабрики, широкого ассортимента - достигает своего пика, а затем идет на спад. Что ж, звучит вполне разумно.

Но классические экономисты пошли дальше. Они заявили, что рано или поздно предсказуемое равновесие цен и рыночной доли будет достигнуто и что честная конкуренция в сотрудничестве с законом убывающей доходности в конечном итоге приведут к невозможности получения сверхприбылей. Такая теория оправдывала государственное регулирование рынков - если прибыли очень высоки, это значит только одно: монополисты искусственно раздувают цены и препятствуют честной конкуренции.