Электродвижущая сила. Закон Ома для замкнутой цепи и неоднородного участка цепи

.

Проводники, подчиняющиеся закону Ома, называются линейными.

Графическая зависимость силы тока от напряжения (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

1.5. Последовательное и параллельное соединение проводников

Проводники в электрических цепях постоянного тока могут соединяться последовательно и параллельно.

При последовательном соединении проводников конец первого проводника соединяется с началом второго и т. д. При этом сила тока одинакова во всех проводниках , а напряжение на концах всей цепи равно сумме напряжений на всех последовательно включенных проводниках. Например, для трех последовательно включенных проводников 1, 2, 3 (рис. 4) с электрическими сопротивлениями , и получим:

Рис. 4.

.

По закону Ома для участка цепи:

U 1 = IR 1 , U 2 = IR 2 , U 3 = IR 3 и U = IR (1)

где – полное сопротивление участка цепи из последовательно включенных проводников. Из выражения и (1) будем иметь . Таким образом,

R = R 1 + R 2 + R 3 . (2)

При последовательном соединении проводников их общее электрическое сопротивление равно сумме электрических сопротивлений всех проводников.

Из соотношений (1) следует, что напряжения на последовательно включенных проводниках прямо пропорциональны их сопротивлениям:

Рис. 5.

При параллельном соединении проводников 1, 2, 3 (рис. 5) их начала и концы имеют общие точки подключения к источнику тока.

При этом напряжение на всех проводниках одинаково , а сила тока в неразветвленной цепи равна сумме сил токов во всех параллельно включенных проводниках . Для трех параллельно включенных проводников сопротивлениями , и на основании закона Ома для участка цепи запишем

Обозначив общее сопротивление участка электрической цепи из трех параллельно включенных проводников через , для силы тока в неразветвленной цепи получим

, (5)

то из выражений (3), (4) и (5) следует, что:

. (6)

При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников.

Параллельный способ включения широко применяется для подключения ламп электрического освещения и бытовых электроприборов к электрической сети.

1.6. Измерение сопротивления

В чем заключаются особенности измерения сопротивлений?

При измерении малых сопротивлений на результат измерения влияют сопротивления соединительных проводов, контактов и контактные термо – эдс. При измерении больших сопротивлений необходимо считаться с объемным и поверхностным сопротивлениями и учитывать или устранять влияние температуры, влажности и других причин. Измерение сопротивлений жидких проводников или проводников, обладающих высокой влажностью (сопротивлений заземления), производится на переменном токе, так как применение постоянного тока связано с погрешностями, вызванными явлением электролиза.

Измерение сопротивлений твердых проводников производится на постоянном токе. Так как при этом, с одной стороны, исключаются погрешности, связанные с влиянием емкости и индуктивности объекта измерения и измерительной цепи, с другой стороны, появляется возможность применять приборы магнитоэлектрической системы, имеющие высокую чувствительность и точность. Поэтому мегомметры выпускаются на постоянном токе.

1.7. Правила Кирхгофа

Правила Кирхгофа соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи .

Правила Кирхгофа не выражают никаких новых свойств стационарного электрического поля в проводниках с током по сравнению с законом Ома. Первое из них является следствием закона сохранения электрических зарядов, второе – следствием закона Ома для неоднородного участка цепи. Однако их использование значительно упрощает расчет токов в разветвленных цепях.

Первое правило Кирхгофа

В разветвленных цепях можно выделить узловые точки(узлы), в которых сходятся не менее трех проводников (рис. 6). Токи, втекающие в узел, принято считать положительными ; вытекающие из узла – отрицательными .

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа:

алгебраическая сумма сил токов, сходящихся в узле, равна нулю:

Или в общем виде:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

Второе правило Кирхгофа


В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи. На рис. 7 представлен простой пример разветвленной цепи. Цепь содержит два узла a и d, в которых сходятся одинаковые токи; поэтому только один из узлов является независимым (a или d).

Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef)

В цепи можно выделить три контура abcd, adef и abcdef. Из них только два являются независимыми (например, abcd и adef), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного закона Ома.


Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 8, например, abcd. Для этого на каждом участке нужно задать положительное направление тока иположительное направление обхода контура . При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 8.

Для участков контура abcd обобщенный закон Ома записывается в виде:

для участкаbc:

для участка da:

Складывая левые и правые части этих равенств и принимая во внимание, что , получим:

Аналогично, для контура adef можно записать:

Согласно второму правилу Кирхгофа:

в любом простом замкнутом контуре, произвольно выбираемом в разветвленной электрической цепи, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков равна алгебраической сумме ЭДС, имеющихся в контуре:

,

где – число источников в контуре, – число сопротивлений в нем.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура.

Если направления токов совпадают с выбранным направлением обхода контура, то силы токов считаются положительными. ЭДС считаются положительными, если они создают токи, сонаправленные с направлением обхода контура.

Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Порядок расчёта разветвлённых цепей постоянного тока

Расчет разветвленной электрической цепи постоянного тока выполняется в следующем порядке:

· произвольно выбирают направление токов во всех участках цепи;

· записывают независимых уравнений, согласно первому правилу Кирхгофа, где – количество узлов в цепи;

· выбирают произвольно замкнутые контуры так, чтобы каждый новый контур содержал хотя бы один участок цепи, не входящий в ранее выбранные контуры. Записывают для них второе правило Кирхгофа.

В разветвленной цепи, содержащей узлов и участков цепи между соседними узлами, число независимых уравнений, соответствующих правилу контуров, составляет .

На основе правил Кирхгофа составляют систему уравнений, решение которой позволяет найти силы токов в ветвях цепи.

Пример 1:

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис.7, система уравнений для определения трех неизвестных токов , и имеет вид:

,

,

.

Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.

В данной статье расскажем про закон Ома, формулы для полной цепи (замкнутой), участка цепи, неоднородного участка цепи, в дифференциальной и интегральной форме, переменного тока, а также для магнитной цепи. Вы узнаете какие материалы соответствуют и не соответствуют закону Ома, а также где он встречается.
постоянный ток , протекающий через проводник, прямо пропорционален напряжению , приложенному к его концам и обратно пропорционален сопротивлению .

Закон Ома был сформулирован немецким физиком и математиком Георгом Омом в 1825-26 годах на основе опыта. Это экспериментальный закон, а не универсальный — он применим к некоторым материалам и условиям.

Закон Ома является частным случаем более позднего и более общего — второго закона Кирхгофа

Ниже будет представлено видео, в котором объясняется закон Ома на пальцах.

Формула закона Ома для участка цепи

Интенсивность постоянного тока, протекающего через проводник, пропорциональна напряжению, приложенному к его концам. В интернете часто называют данную формулу первым законом Ома:

U — напряжение

I — сила (интенсивность) тока

R — Сопротивление

Электрическое сопротивление:

Коэффициент пропорциональности R называется электрическим сопротивлением или сопротивлением.

Отношение напряжения к току для данного проводника является постоянным:

Единица электрического сопротивления составляет 1 Ом (1 Ω):

Резистор имеет сопротивление 1, если приложенное напряжение 1 вольт и сила тока составляет 1 ампер.

Зависимость электрического сопротивления от размера направляющей:

Сопротивление проводящей секции с постоянным поперечным сечением R прямо пропорционально длине этого сегмента li, обратно пропорциональному площади поперечного сечения S:

R — электрическое сопротивление

ρ — удельное сопротивление

I — длина направляющей

S — площадь поперечного сечения

Эта зависимость была подтверждена экспериментально британским физиком Хамфри Ди в 1822 году до разработки закона Ома.

Закон Ома для замкнутой (полной) цепи

— это значение силы (интенсивности) тока в настоящей цепи, который зависит от сопротивления нагрузки и от источника тока (E), также его называют вторым законом Ома.

Электрическая лампочка является потребителем источника тока, подключив их вместе, они создают полную электро-цепь. На картинке выше, вы можете увидеть полную электрическую цепь, состоящую из аккумулятора и лампы накаливания.

Электричество, проходит через лампу накаливания и через сам аккумулятор. Следовательно, ток проходя через лампу, в дальнейшем пройдет и через аккумулятор, то есть сопротивление лампочки складывается со сопротивлением аккумулятора.

Сопротивление нагрузки (лампочка), называют внешним сопротивлением , а сопротивление источника тока (аккумулятора) - внутренним сопротивление . Сопротивление аккумулятора обозначается латинской буквой r.

Когда электричество течет вокруг цепи, внутреннее сопротивление самой ячейки сопротивляется потоку тока, и поэтому тепловая энергия теряется в самой ячейке.

  • E = электродвижущая сила в вольтах, V
  • I = ток в амперах, A
  • R = сопротивление нагрузки в цепи в Омах, Ω
  • r = внутреннее сопротивление ячейки в Омах, Ω

Мы можем изменить это уравнение;

В этом уравнении появляется (V ), что является конечной разностью потенциалов , измеренной в вольтах (V). Это разность потенциалов на клеммах ячейки при протекании тока в цепи, она всегда меньше э.д.с. ячейки.

Закон Ома для неоднородного участка цепи

Если на участке цепи действуют только потенциальные силы (Рисунок 1а ), то закон Ома записывается в известном виде . Если же в кругу проявляется еще и действие сторонних сил (Рисунок 2б ), то закон Ома примет вид , откуда . Это и есть закон Ома для любого участка цепи .

Закон Ома можно распространить и на весь круг. Соединив точки 2 и 1 (Рисунок 3в ), преобразуем разность потенциалов в ноль, и учитывая сопротивление источника тока, закон Ома примет вид . Это и есть выражение закона Ома для полной цепи .

Последнее выражение можно представить в различных формах. Как известно, напряжение на внешнем участке зависит от нагрузки, то есть
или , или .

В этих выражениях Ir — это падение напряжения внутри источника тока, а также видно, что напряжение U меньше ε на величину Ir . Причем, чем больше внешнее сопротивление по сравнению с внутренним, тем больше U приближается к ε.

Рассмотрим два особых случая, в отношении внешнего сопротивления цепи.

1) R = 0 — такое явление называют коротким замыканием. Тогда, из закона Ома имеем — , то есть ток в цепи возрастает до максимума, а внешний спад напряжения U 0. При этом в источнике выделяется большая мощность, что может привести к его неисправности.

2) R = ∞ , то есть электрическая цепь разорвана, тогда , а . Итак, в этом случае, ЭДС численно равна напряжению на клеммах разомкнутого источника тока.

Закон Ома в дифференциальной форме

Закон Ома можно представить в таком виде, чтобы он не был связан с размерами проводника. Выделим участок проводника Δ l , на концах которой приложено потенциалы φ 1 и φ 2 . Когда средняя площадь сечения проводника Δ S , а плотность тока j , то сила тока

Если Δ l → 0, то взяв предел отношения, . Итак, окончательно получим , или в векторной форме — это выражение закона Ома в дифференциальной форме . Этот закон выражает силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон ома для переменного тока

Это уравнение представляет собой запись закона Ома для цепей переменного тока относительно их амплитудных значений. Понятно, что оно будет справедливым и для эффективных значений силы и тока: .

Для цепей переменного тока возможен случай, когда , а это значит, что U L = U C . Поскольку эти напряжения находятся в противофазе, то они компенсируют друг друга. Такие условия называют резонансом напряжений . Резонанс можно достичь или при ω = const , изменяя С и L , или же при постоянных С и L подбирают ω, которая называется резонансным . Как видно — .

Особенности резонанса напряжений следующие:

Окончательно из (2) — (4) имеем выражение для закона Ома в интегральной форме

который он установил экспериментально.

Интерпретация закона Ома

Интенсивность тока, являющаяся действием приложенного напряжения, ведет себя пропорционально его напряжению. Например: если приложенное напряжение увеличивается в два раза, оно также удваивает силу тока (интенсивность тока).

Помните, что закон Ома удовлетворяется только частью материалов — в основном металлами и керамическими материалами.

Когда закон Ома встречается и какие материалы соответствуют и не соответствуют закону Ома

Закон Ома является экспериментальным законом, выполненным для некоторых материалов (например, металлов) для фиксированных условий тока, в частности температуры проводника.

Материалы, относящиеся к закону Ома, называются омическими направляющими или линейными проводниками. Примерами проводников, которые соответствуют закону Ома, являются металлы (например, медь, золото, железо), некоторые керамические изделия и электролиты.

Материалы, не относящиеся к закону Ома, в которых сопротивление является функцией интенсивности протекающего через них тока, называются нелинейными проводниками. Примерами руководств, не относящихся к закону Ома, являются полупроводники и газы.

Закон Ома не выполняется, когда изменяются параметры проводника, особенно температура.

Обязательным условием существования электрического тока является наличие электрического поля, для существования которого, в свою очередь, необходима разность потенциалов (напряжение). Ток будет направлен в сторону уменьшения потенциалов (на рисунке – влево), а свободные электроны будут двигаться в обратную сторону.

На концах участка проводника заданы потенциалы φ_1 и φ_2, причем φ_1>φ_2. Напряжение в таком случае можно найти по формуле:

В 1826 году Георг Ом, обобщив итоги опытов, показавших, что, чем больше напряжение на участке, тем больше сила тока, проходящего через него, получил зависимость, названную законом Ома. В ходе экспериментов Ом выявил, что различные проводники при одинаково заданном напряжении будут проводить ток по-разному, т.е., каждый проводник обладает различной мерой проводимости. Эту величину назвали электрическим сопротивлением.

Определеение Закона Ома для однородного участка цепи гласит: сила тока для однородного проводника на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению проводника.

Формула закона Ома для однородного участка цепи

  • I [А] – сила тока,
  • U [В] – напряжение,
  • R [Ом] – электрическое сопротивление.

Сопротивление – главная характеристика проводника. В зависимости от строения проводника, в них существует различное количество узлов кристаллической решетки и атомов примесей, взаимодействуя с которыми электроны замедляются.

Дифференциальная форма закона Ома . Найдем связь между плотностью тока j и напряженностью поля Е в одной и той же точке проводника. В изотропном проводнике упорядоченное движение носителей тока происходит в направлении вектора Е . Поэтому направления векторов j и Е совпадают. Рассмотрим в однородной изотропной среде элементарный объем с образующими, параллельными вектору Е , длиной , ограниченной двумя эквипотенциальными сечениями 1 и 2 (рис. 4.3).

Обозначим их потенциалы и, а среднюю площадь сечения через. Используя закон Ома, получим для тока, или для плотности тока, следовательно

Перейдем к пределу при , тогда рассматриваемый объем можно считать цилиндрическим, а поле внутри него однородным, так что

где Е - напряженность электрического поля внутри проводника. Учитывая, что j и Е совпадают по направлению, получаем

.

Это соотношение является дифференциальной формой закона Ома для однородного участка цепи . Величина называется удельной проводимостью. На неоднородном участке цепи на носители тока действуют, кроме электростатических сил , еще и сторонние силы, следовательно, плотность тока в этих участках оказывается пропорциональной сумме напряженностей. Учет этого приводит кдифференциальной форме закон Ома для неоднородного участка цепи .

.

При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными . На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи .

Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ . Разность потенциалов на концах участка Δφ =φ 1−φ 2=AKq , где A K - работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, Aelq =φ 1−φ 2, где q - положительный заряд, который перемещается между любыми двумя точками цепи; φ 1−φ 2 - разность потенциалов точек в начале и конце рассматриваемого участка; Astq =ε . Тогда говорят о напряжении для напряженности: E стац. э. п. = E э/стат. п. + E стор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

U =AKq +Astorq =φ 1−φ 2+ε .

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то U =φ 1−φ 2. Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

Закон Ома для неоднородного участка цепи имеет вид:

I =UR =φ 1−φ 2+εR ,

где R - общее сопротивление неоднородного участка.

ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε < 0.

Закон Ома для однородного участка цепи:

Участок цепи называется однородным, если в его состав не входит источник тока. I=U/R, 1 Ом – сопротивление такого проводника, в котором сила в 1А течет при 1В.

Величина сопротивления зависит от формы и свойств материала проводника. Для однородного цилиндрического проводника его R=ρl/S, ρ – величина, зависящая от использованного материала – удельное сопротивление вещества, из ρ=RS/l следует, что (ρ) = 1 Ом*м. Величина, обратная ρ – удельная проводимость γ=1/ρ.

Экспериментально установлено, что при повышении температуры электрическое сопротивление у металлов увеличивается. При не слишком низких температурах удельное сопротивление металлов растет

абсолютной температуре p = α*p 0 *T, p 0 – удельное сопротивление при 0 о С, α – температурный коэффициент. Для большинства металлов α = 1/273 = 0,004 К -1 . p = p 0 *(1+ α*t), t – температура в о С.

Согласно классической электронной теории металлов в металлахс идеальной кристаллической решеткой электроны движутся не испытывая сопротивления (p = 0).

Причина, вызывающая появление электрического сопротивления – посторонние примеси и физические дефекты кристаллической решетки, а также тепловое движение атомов. Амплитуда колебаний атомов зависит от t. Зависимость удельного сопротивления от t является сложной функцией:

p(T) = p ост + p ид. , p ост – остаточное удельное сопротивление, p ид. — идеальное сопротивление металла.

Идеальное сопротивление соответствует абсолютно чистому металлу и определяется лишь тепловыми колебаниями атомов. На основании общих соображений уд. сопротивление ид. металла должно стремиться к 0 при T → 0. Однако удельное сопротивление как функция слагается из суммы независимых слагаемых, поэтому в связи с наличием примесей и др. дефектов кристаллической решетки удельного сопротивления при понижении t → к некоторому росту пост. p ост. Иногда ля некоторых металлов температурная зависимость p проходит через минимум. Величина ост. уд. сопротивления зависит от наличия дефектов в решетке и содержания примесей.

j=γ*E – закон Ома в дифференцированной форме, описывающий процесс в каждой точке проводника, где j – плотность тока, Е – напряженность электрического поля.

Цепь включает резистор R и источник тока. На неоднородном участке цепи на носители тока действуют кроме электростатических сил сторонние силы. Сторонние силы способны вызвать упорядоченное движение носителей тока, такие как электростатические. На неоднородном участке цепи к полю электрических зарядов добавляется поле сторонних сил, создаваемое источником ЭДС. Закон Ома в дифференцированной форме: j=γE. Обобщая формулу на случай неоднородного проводника j=γ(E+E*)(1).

От закона Ома в дифференцированной форме для неоднородного участка цепи можно перейти к интегральной форме закона Ома для этого участка. Для этого рассмотрим неоднородный участок. В нем поперечное сечение проводника может быть непостоянным. Допустим, что внутри этого участка цепи существует линия, которую будем называть контуром тока, удовлетворяющая:

1. В каждом сечении перпендикулярно контуру величины j, γ, E, E* имеют одинаковые значения.

2. j, E и Е* в каждой точке направлены по касательной к контуру.

Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от 1 к 2. Возьмем элемент проводника площадью S и элементом контура dl. Спроецируем векторы, входящие в (1) на элемент контура dl: j=γ(E+E*) (2).

I вдоль контура равна проекции плотности тока на площадь: I=jS (3).

Удельная проводимость: γ=1/ρ. Заменяя в (2) I/S=1/ρ(E+E*).Умножим на dl и проинтегрируем вдоль контура ∫Iρdl/S=∫Eedl+∫E*edl. Учтем, что ∫ρdl/S=R, а ∫Eedl=(φ 1 -φ 2), ∫E*edl= ε 12 , IR= ε 12 +(φ 1 -φ 2). ε 12 , как и I – величина алгебраическая, поэтому условились, когда ع способствует движению положительных носителей тока в выбранном направлении 1-2, считать ε 12 >0. Но на практике этот случай, когда при обходе участка цепи в начале встречается отрицательный полюс, затем положительный. Если ع препятствует движению положительных носителей, в выбранном направлении, то ε 12

Закон ома неоднородный участок цепи

1.8. Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δ q , переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ t , к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ 12 = φ 1 – φ 2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12 , действующей на данном участке. Поэтому полная работа равна

Величину U 12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи.

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи (cd) является однородным.

Закон Ома для неоднородного участка цепи

На практике видно, что для поддержания стабильного тока в замкнутой цепи необходимы силы принципиально иной природы, нежели кулоновские, тогда наблюдается случай, когда на участке цепи на свободные электрические заряды одновременно действуют как силы электрического поля, так и сторонние силы (любые неконсервативные силы, действующие на заряд, за исключением сил электрического сопротивления (кулоновских сил)). Такой участок называется неоднородным участком цепи. На рисунке ниже приведен пример такого участка.

Напряженность поля в любой точке цепи равна векторной сумме поля кулоновских сил и поля сторонних сил:

Сформулируем закон Ома для неоднородного участка цепи — Сила тока прямо пропорциональна напряжению на этом участке и обратно пропорциональна его полному сопротивлению:

– формула закона Ома для неоднородного участка цепи.

  • I – сила тока,
  • U12 – напряжение на участке,
  • R – полное сопротивление цепи.
  • Разность потенциалов характеризует работу силы электрического поля по переносу единичного положительного заряда (q) из точки 1 в точку 2:

    — где φ1 и φ 2 – потенциалы на концах участка.

    ЭДС характеризует работу сторонних сил по переносу единичного положительного заряда точки 1 в точку 2: — где ε12 – ЭДС, действующая на данном участке, численно равна работе по перемещению единичного положительного заряда вдоль контура.

    Напряжение на участке цепи представляет собой суммарную работу сил ЭП и сторонних сил:

    Тогда закон Ома примет вид:

    ЭДС может быть как положительной, так и отрицательной. Это зависит от полярности включения ЭДС в участок. Если внутри источника тока обход совершается от отрицательного полюса к положительному, то ЭДС положительная (см. рисунок). Сторонние силы при этом совершают положительную работу. Если же обход совершается от положительного полюса к отрицательному, то ЭДС отрицательная. Проще говоря, если ЭДС способствует движению положительных зарядов, то ε>0, иначе ε

    Определить ток, идущий по изображенному на рисунке участку АВ. ЭДС источника 20 В, внутреннее сопротивление 1 Ом, потенциалы точек А и В соответственно 15 В и 5 В, сопротивление проводов 3 Ом.

    • ε = 20 В
    • r = 1 Ом
    • φ1 = 15 В
    • φ2 = 5 В
    • R = 3 Ом
  • I – ?
  • Запишем закон Ома для неоднородного участка цепи —
  • Считая, что точка А начало участка, а точка В – конец, возьмем ЭДС со знаком «минус» и, подставив исходные данные, получим
  • Знак «минус» говорит о том, что ток идет от точки В к точке А, от точки с меньшим потенциалом к точке с большим, что обычно для источников тока.
  • Ответ: –2,5 А
  • Два элемента соединены «навстречу» друг другу, как показано на рисунке. Определить разность потенциалов между точками А и В, если ε1 = 1,4 В, r1 = 0,4 Ом, ε2 = 1,8 В, r2 = 0,6 Ом.

    Электрический ток

    При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

    Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

    Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка , где AK - работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, , где q - положительный заряд, который перемещается между любыми двумя точками цепи; - разность потенциалов точек в начале и конце рассматриваемого участка; . Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

    Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то. Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

    Закон Ома для неоднородного участка цепи имеет вид:

    где R - общее сопротивление неоднородного участка.

    ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε

    constant-current.narod.ru

    Электродвижущая сила. Закон Ома для неоднородного участка цепи. Закон Кирхгофа

    Мы рассматривали закон Ома (98.1) для однородного участка цепи, т. е. такого, в котором не действует ЭДС (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи.

    Если ток проходит по неподвижным проводникам, образующим участок 1-2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 1-2, согласно (97.4), А 12 =Q 0 E 0 +Q 0 ()

    ЭДС E 12 , как и сила тока /, - величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если ЭДС способствует движению положительных зарядов в выбранном направлении (в направлении 1 - 2), то E 12 > 0. Если ЭДС препятствует движению положительных зарядов в данном направлении, то E 12

    Выражение (1) или (2) представляет собой закон Ома для неоднородного участка цепи в интегральной форме, который является обобщенным законом Ома.

    Если на данном участке цепи источник тока отсутствует (E 12 = 0), то из (4) приходим к закону Ома для однородного участка цепи (98.1): I = Ф1-Ф2/R = U/R

    Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, ф 1 = ф 2

    тогда из (4) получаем закон Ома для замкнутой цепи: I=E/r + R 1

    Расчет разветвленных цепей значительно упрощается, если пользоваться правилами, сформулированными немецким физиком Г. Р. Кирхгофом. Этих правил два.

    Первое из них относится к узлам цепи. Узлом называется точка, в которой сходится более чем два проводника (рис. 4.4). Ток, текущий к узлу, считается положительным, текущий от узла имеет противоположный знак. Первое правило Кирхгофа гласит, что алгебраическая сумма токов, сходящихся в узле, равна нулю : .

    Это правило вытекает из уравнения непрерывности, т. е., в конечном счете, из закона сохранения заряда. Число уравнений, составленных по первому правилу Кирхгофа, должно быть на одно меньше, чем число узлов в исследуемой цепи . Этим обеспечивается линейная независимость получаемых уравнений.

    Второе правило относится к любому выделенному в разветвленной цепи замкнутому контуру (например, 1-3-2) (см. рис. 4.5). Зададим направление обхода, изобразив его стрелкой. Применим к каждому из неразветвленных участков контура закон Ома: ; .

    При сложении этих выражений получается одно из уравнений ;
    которое выражает второе правило Кирхгофа : для любого замкнутого контура алгебраическая сумма всех падений напряжения равна сумме всех ЭДС в этом контуре .

    Подобные уравнения могут быть составлены для всех замкнутых контуров, сущ. в данной разветвленной цепи, однако их число должно быть ограничено уравнениями для независимых контуров, в которых встречается хотя бы один ток, не входящий в остальные.
    При составлении уравнений согласно 2-му правилу Кирхгофа токам и ЭДС нужно приписывать знаки в соответствии с выбранным направлением обхода.
    Например, ток нужно считать «+», он течет по направлению обхода. ЭДС также нужно приписать знак «плюс», так как она действует в направлении обхода. Току и ЭДС приписывается знак «минус».
    На практике, при решении задач, при составлении уравнений направления токов выбирают произвольно и в соответствии с этим применяют правило знаков.
    Действительное направление токов определится решением задачи: если какой-либо ток окажется положительным, то его направление выбрано правильно, если отрицательным, то в действительности он течет противоположно выбранному направлению. Число независимых уравнений, составленных в соответствии с первым и вторым правилами Кирхгофа, равно числу различных токов , текущих в разветвленной цепи. Поэтому, если заданы ЭДС и сопротивления, то могут быть вычислены все токи.

    Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

    Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе - за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи,

    образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические за ряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддер-

    живается разность потенциалов и в цепи течет постоянный электрический ток.

    Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС), действующей в цепи: (97.1)

    Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину E можно также называть электродвижущей силой источника тока, включенного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует ЭДС», т.е. термин «электродвижущая сила» употребляется как характеристика сторонних сил. ЭДС, как и потенциал, выражается в вольтах. Сторонняя сила F CT , действующая на заряд Q o , может быть выражена как где Ест - напряженность поля сторонних сил. Работа сторонних сил по перемещению заряда Q o на замкнутом участке цепи

    Разделив (97.2) на Qo, получим выражение для ЭДС, действующей в цепи:

    т.е. ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. ЭДС, действующая на участке 1 - 2, равна (97.3)

    На заряд Q 0 помимо сторонних сил действуют также силы электростатического поля Fe = Q 0 E. Таким образом, результирующая сила, действующая в цепи на заряд Qo, равна F = F CT + F c = Q 0 (E CT + Е).

    Работа, совершаемая результирующей силой над зарядом Q 0 на участке 1 - 2, равна

    Используя выражения (97.3) и (84.8), можем записать

    Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае А 12 =Q 0 E 12 .

    Напряжением U на участке 1 - 2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),

    Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует ЭДС, т. е. сторонние силы отсутствуют.

    • Федеральный закон от 21 ноября 2011 г. N 323-ФЗ "Об основах охраны здоровья граждан в Российской Федерации" (с изменениями и дополнениями) Федеральный закон от 21 ноября 2011 г. N 323-ФЗ"Об основах охраны здоровья […]
    • Возврат аванса от поставщика: бухгалтерский и налоговый учет Аванс или предоплата – это оплата, которая получена поставщиком (продавцом) до наступления даты фактической отгрузки продукции или до момента оказания услуг […]
    • Обзор практики рассмотрения споров по договору подряда "Обзор практики рассмотрения споров по договору подряда" Одобрено Президиумом Федерального арбитражного суда Уральского округа. Протокол N 5 от 30.03.2007 1. […]
    • В оперативном управлении автономного учреждения дошкольного образования находится объект недвижимого имущества (здание детского сада). Начисление и уплату налога на имущество осуществляет автономное учреждение за счет […]
    • Количество признаков преступления Сущность правового подхода заключается в рассмотрении преступности как собирательного понятия - сово txt fb2 ePub html на телефон придет ссылка на файл выбранного формата Шпаргалки […]
    • Что делать если не возвращают залог/депозит за квартиру. Подробная инструкция по возврату, как действовать законно и вернуть деньги. Распространенной ситуацией является, когда помимо месячной арендной платы, […]