Методы математической статистики (2) - Реферат. Методы математической статистики Математические статистические методы

Методы математической статистики


1. Введение

Математической статистикой называется наука, занимающаяся разработкой методов получения, описания и обработки опытных данных с целью изучения закономерностей случайных массовых явлений.

В математической статистике можно выделить два направления: описательную статистику и индуктивную статистику (статистический вывод). Описательная статистика занимается накоплением, систематизацией и представлением опытных данных в удобной форме. Индуктивная статистика на основе этих данных позволяет сделать определенные выводы относительно объектов, о которых собраны данные, или оценки их параметров.

Типичными направлениями математической статистики являются:

1) теория выборок;

2) теория оценок;

3) проверка статистических гипотез;

4) регрессионный анализ;

5) дисперсионный анализ.

В основе математической статистики лежит ряд исходных понятий без которых невозможно изучение современных методов обработки опытных данных. В ряд первых из них можно поставить понятие генеральной совокупности и выборки.

При массовом промышленном производстве часто нужно без проверки каждого выпускаемого изделия установить, соответствует ли качество продукции стандартам. Так как количество выпускаемой продукции очень велико или проверка продукции связана с приведением ее в негодность, то проверяется небольшое количество изделий. На основе этой проверки нужно дать заключение о всей серии изделий. Конечно нельзя утверждать, что все транзисторы из партии в 1 млн. штук годны или негодны, проверив один из них. С другой стороны, поскольку процесс отбора образцов для испытаний и сами испытания могут оказаться длительными по времени и привести к большим затратам, то объем проверки изделий должен быть таким, чтобы он смог дать достоверное представление о всей партии изделий, будучи минимальных размеров. С этой целью введем ряд понятий.

Вся совокупность изучаемых объектов или экспериментальных данных называется генеральной совокупностью. Будем обозначать через N число объектов или количество данных, составляющих генеральную совокупность. Величину N называют объемом генеральной совокупности. Если N>>1, то есть N очень велико, то обычно считают N = ¥.

Случайной выборкой или просто выборкой называют часть генеральной совокупности, наугад отобранную из нее. Слово "наугад" означает, что вероятности выбора любого объекта из генеральной совокупности одинакова. Это важное предположение, однако, часто трудно это проверить на практике.

Объемом выборки называют число объектов или количество данных, составляющих выборку, и обозначают n . В дальнейшем будем считать, что элементам выборки можно приписать соответственно числовые значения х 1 , х 2 , ... х n . Например, в процессе контроля качества производимых биполярных транзисторов это могут быть измерения их коэффициента усиления по постоянному току.


2. Числовые характеристики выборки

2.1 Выборочное среднее

Для конкретной выборки объема n ее выборочное среднее

определяется соотношением

где х i – значение элементов выборки. Обычно требуется описать статистические свойства произвольных случайных выборок, а не одной из них. Это значит, что рассматривается математическая модель, которая предполагает достаточно большое количество выборок объема n. В этом случае элементы выборки рассматриваются как случайные величины Х i , принимающие значения х i с плотностью вероятностей f(x), являющейся плотностью вероятностей генеральной совокупности. Тогда выборочное среднее также является случайной величиной

равной

Как и ранее будем обозначать случайные величины прописными буквами, а значения случайных величин – строчными.

Среднее значение генеральной совокупности, из которой производится выборка, будем называть генеральным средним и обозначать m x . Можно ожидать, что если объем выборки значителен, то выборочное среднее не будет заметно отличаться от генерального среднего. Поскольку выборочное среднее является случайной величиной, для нее можно найти математическое ожидание:

Таким образом, математическое ожидание выборочного среднего равно генеральному среднему. В этом случае говорят, что выборочное среднее является несмещенной оценкой генерального среднего. В дальнейшем мы вернемся к этому термину. Так как выборочное среднее является случайной величиной, флуктуирующей вокруг генерального среднего, то желательно оценить эту флуктуацию с помощью дисперсии выборочного среднего. Рассмотрим выборку, объем которой n значительно меньше объема генеральной совокупности N (n << N). Предположим, что при формировании выборки характеристики генеральной совокупности не меняются, что эквивалентно предположению N = ¥. Тогда

Случайные величины Х i и X j (i¹j) можно считать независимыми, следовательно,

Подставим полученный результат в формулу для дисперсии:

где s 2 – дисперсия генеральной совокупности.

Из этой формулы следует, что с увеличением объема выборки флуктуации среднего выборочного около среднего генерального уменьшаются как s 2 /n. Проиллюстрируем сказанное примером. Пусть имеется случайный сигнал с математическим ожиданием и дисперсией соответственно равными m x = 10, s 2 = 9.

Отсчеты сигнала берутся в равноотстоящие моменты времени t 1 , t 2 , ... ,

X(t)

X 1

t 1 t 2 . . . t n t

Так как отсчеты являются случайными величинами, то будем их обозначать X(t 1), X(t 2), . . . , X(t n).

Определим количество отсчетов, чтобы среднее квадратическое отклонение оценки математического ожидания сигнала не превысило 1% его математического ожидания. Поскольку m x = 10, то нужно, чтобы

С другой стороны поэтому или Отсюда получаем, что n ³ 900 отсчетов.

2.2 Выборочная дисперсия

По выборочным данным важно знать не только выборочное среднее, но и разброс выборочных значений около выборочного среднего. Если выборочное среднее является оценкой генерального среднего, то выборочная дисперсия должна быть оценкой генеральной дисперсии. Выборочная дисперсия

для выборки, состоящей из случайных величин определяется следующим образом

Используя это представление выборочной дисперсии, найдем ее математическое ожидание

1. Основные понятия и определения

статистика выборка совокупность бернулли

Понятие статистики

Статистика, вернее ее методы исследования, широко применяется в различных областях человеческих знаний. Однако, как любая наука, она требует определения предмета ее исследования. В связи с этим различают статистику, занимающуюся изучением социально-экономических явлений, которая относится к циклу общественных наук, и статистику, занимающуюся закономерностями явлений природы, которая относится к наукам естественным.

Авторы большинства современных отечественных вузовских учебников по теории статистики (общей теории статистики) под статистикой понимают предметную общественную науку, т.е. науку, имеющую свои особые предмет и метод познания.

Статистика - общественная наука, которая изучает количественную сторону качественно определенных массовых социально-экономических явлений и процессов, их структуру и распределение, размещение в пространстве, движение во времени, выявляя действующие количественные зависимости, тенденции и закономерности, причем в конкретных условиях места и времени.

Предмет статистики

Статистика как наука исследует не отдельные факты, а массовые социально-экономические явления и процессы, выступающие как множество отдельных факторов, обладающих как индивидуальными, так и общими признаками.

Объект статистического исследования в статистике называют статистической совокупностью.

Статистическая совокупность - это множество единиц, обладающих массовостью, однородностью, определенной целостностью, взаимозависимостью состояния отдельных единиц и наличием вариации.

Например, в качестве особых объектов статистического исследования, т.е. статистических совокупностей, может выступать множество коммерческих банков, зарегистрированных на территории Российской Федерации, множество акционерных обществ, множество граждан какой-либо страны и т.д. Важно помнить, что статистическая совокупность состоит из реально существующих материальных объектов.

Каждый отдельно взятый элемент данного множества называется единицей статистической совокупности.

Единицы статистической совокупности характеризуются общими свойствами, именуемыми в статистике признаками , т.е. под качественной однородностью совокупности понимается сходство единиц (объектов, явлений, процессов) по каким-либо существенным признакам, но различающихся по каким-либо другим признакам.

Единицы совокупности наряду с общими для всех единиц признаками, обусловливающими качественную определенность совокупности, также обладают индивидуальными особенностями и различиями, отличающими их друг от друга, т.е. существует вариация признаков . Она обусловлена различным сочетанием условий, которые определяют развитие элементов множества.

Например, уровень производительности труда работников банка определяется его возрастом, квалификацией, отношением к труду и т.д.

Именно наличие вариации предопределяет необходимость статистики . Вариация признака может отражаться статистическим распределением единиц совокупности.

Статистика как наука изучает, прежде всего, количественную сторону общественных явлений и процессов в конкретных условиях места и времени, т.е. предметом статистики выступают размеры и количественные соотношения социально-экономических явлений, закономерности их связи и развития.

Количественную характеристику статистика выражает через определенного рода числа, которые называются статистическими показателями.

Статистический показатель отражает результат измерения у единиц совокупности и совокупности в целом.

Теоретические основы статистики как науки

Теоретическую основу любой науки, в том числе и статистики, составляют понятия и категории, в совокупности которых выражаются основные принципы данной науки.

Статистические совокупности обладают определенными свойствами, носителями которых выступают единицы совокупности (явления), обладающие определенными признаками. По форме внешнего выражения признаки делятся на атрибутивные (описательные, качественные) и количественные. Атрибутивные (качественные) признаки не поддаются количественному (числовому) выражению.

Количественные признаки можно разделить на дискретные и непрерывные.

Важной категорией статистики является также статистическая закономерность.

Статистическая закономерность - это форма проявления причинной связи, выражающаяся в последовательности, регулярности, повторяемости событий с достаточно высокой степенью вероятности, если причины (условия), порождающие события, не изменяются или изменяются незначительно.

Статистическая закономерность устанавливается на основе анализа массовых данных. Это обусловливает ее взаимосвязь с законом больших чисел.

Сущность закона больших чисел заключается в том, что в числах, суммирующих результат массовых наблюдений, выступают определенные правильности, которые не могут быть обнаружены на небольшом числе факторов. Закон больших чисел порожден свойствами массовых явлений. Тенденции и закономерности, вскрытые с помощью закона больших чисел, имеют силу лишь как массовые тенденции, но не как законы для каждого отдельного, индивидуального случая.

Метод статистики

Статистика как наука выработала приемы и способы изучения массовых общественных явлений, зависящие от особенностей ее предмета и задач, которые ставятся при его изучении. Приемы и способы, с помощью которых статистика изучает свой предмет, образуют статистическую методологию.

Под статистической методологией понимается система приемов, способов и методов, направленных на изучение количественных закономерностей, проявляющихся в структуре, динамике и взаимосвязях социально-экономических явлений.

Задача статистического исследования состоит в получении обобщающих характеристик и выявлении закономерностей в общественной жизни в конкретных условиях места и времени, которые проявляются лишь в большой массе явлений через преодоление свойственной ее единичным элементам случайности.

Статистическое исследование состоит из трех стадий:

статистическое наблюдение;

сводка и группировка результатов наблюдения;

анализ полученных обобщающих показателей.

Все три стадии связаны между собой, и на каждой из них используются специальные методы, объясняемые содержанием выполняемой работы.

Понятие о выборочном наблюдении

Статистическая методология исследования массовых явлений различает, как известно, два способа наблюдения в зависимости от полноты охвата объекта: сплошное и несплошное. Разновидностью несплошного наблюдения является выборочное.

Под выборочным наблюдением понимается такое несплошное наблюдение, при котором статистическому обследованию (наблюдению) подвергаются единицы изучаемой совокупности, отобранные случайным способом.

Выборочное наблюдение ставит перед собой задачу - по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов проведения статистического наблюдения и научно организованной работы по отбору единиц.

Выборочный метод позволяет получить необходимые сведения приемлемой точности, когда факторы времени и стоимости делают сплошную разработку нецелесообразной.

Характеристики выборочной и генеральной совокупности

Совокупность отобранных для обследования единиц в статистике принято называть выборочной , а совокупность единиц, из которых производится отбор, - генеральной .

Основные характеристики параметров генеральной и выборочной совокупностей обозначаются определенными символами (табл. 1.1 ).

Таблица 1.1 Символы основных характеристик параметров генеральной и выборочной совокупностей

Характеристика

Генеральная совокупность

Выборочная совокупность

Объем совокупности (численность единиц)

Численность единиц, обладающих обследуемым признаком

Доля единиц, обладающих обследуемым признаком

Средний размер признака

Дисперсия количественного признака

Дисперсия доли

В процессе проведения выборочного наблюдения, как и вообще при анализе данных любого обследования, статистика выделяет два вида ошибок: регистрации и репрезентативности.

Ошибки регистрации могут иметь случайный (непреднамеренный) или систематический (тенденциозный) характер. Их можно избежать при правильной организации и проведении наблюдения.

Ошибки репрезентативности органически присущи выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную.

Избежать ошибок репрезентативности нельзя, однако, пользуясь методами теории вероятностей, основанными на использовании предельных теорем закона больших чисел, эти ошибки можно свести к минимальным значениям, границы которых устанавливаются с достаточно большой точностью;

Ошибка выборочного наблюдения - это разность между величиной параметра в генеральной совокупности и его величиной, вычисленной по результатам выборочного наблюдения.

Для среднего значения ошибка будет определяться так:

Где, . (1.1)

Величина называется предельной ошибкой выборки .

Предельная ошибка выборки величина случайная. Исследованию закономерностей случайных ошибок выборки посвящены предельные теоремы закона больших чисел.

Наиболее полно эти закономерности раскрыты в теоремах Л.Л. Чебышева и А.М. Ляпунова.

Теорема П. Л. Чебышева : при достаточно большом числе независимых наблюдений можно с вероятностью, близкой к единице (т.е. почти с достоверностью), утверждать, что отклонение выборочной средней от генеральной будет сколько угодно малым.

В теореме доказано, что величина ошибки не должна превышать.

В свою очередь, величина, выражающая среднее квадратическое отклонение выборочной средней от генеральной средней, зависит от колеблемости признака в генеральной совокупности и числа отобранных единиц.

Эта зависимость выражается формулой

где - средняя ошибка выборки (зависит и от способа производства выборки);

Генеральная дисперсия;

Объем выборочной совокупности.

Нетрудно убедиться, что при отборе большого числа единиц расхождения между средними будут меньше, т.е. существует обратная связь между, средней ошибкой выборки и числом отобранных единиц.

Можно доказать, что увеличение колеблемости признака влечет за собой увеличение среднего квадратического отклонения, а, следовательно, и ошибки.

Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой

Так как величина при достаточно больших близка к, можно приближенно считать, что выборочная дисперсия равна генеральной дисперсии, т.е. .

Следовательно, средняя ошибка выборки показывает , какие возможны отклонения характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности. Однако о величине этой ошибки можно судить с определенной вероятностью. На величину вероятности указывает множитель.

А. М. Ляпунов доказал, что распределение выборочных средних (а, следовательно, и их отклонений от генеральной средней) при достаточно большом числе независимых наблюдений приближенно нормально при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически теорему Ляпунова можно записать так:

где - предельная ошибка выборки .

Значения этого интеграла для различных значений коэффициента доверия вычислены и приводятся в специальных математических таблицах.

Например:

t = 1 F (t) = 0.683; t = 1.5 F (t) = 0.866;

t = 2 F (t) = 0.954; t = 2.5 F (t) = 0.988;

t = 3 F (t) = 0.997; t = 3.5 F (t) = 0.999.

Это может быть прочитано так: с вероятностью можно утверждать, что разность между выборочной и генеральной средними не превышает одной величины средней ошибки выборки.

Другими словами, в случаев ошибка репрезентативности не выйдет за пределы и т.д.

Зная выборочную среднюю величину признака и предельную ошибку выборки, можно определить границы (пределы), в которых заключена генеральная средняя:

Теорема Бернулли рассматривает ошибку выборки для альтернативного признака, у которого возможны только два исхода: наличие признака () и отсутствие его (0).

Теорема Бернулли утверждает , что при достаточно большом объеме выборки вероятность расхождения между долей признака в выборочной совокупности () и долей признака в генеральной совокупности () будет стремиться к единице:

т.е. с вероятностью, сколько угодно близкой к единице, можно утверждать, что при достаточно большом объеме выборки частость признака (выборочная доля) сколько угодно мало будет отличаться от доли признака (в генеральной совокупности).

Ввиду того, что вероятность расхождения между частостью и долей следует закону нормального распределения, эту вероятность можно найти по функции в зависимости от задаваемой величины.

Средняя ошибка выборки для альтернативного признака определяется по формуле

Поскольку доля признака в выборочной совокупности неизвестна, ее необходимо заменить через долю того же признака в генеральной совокупности, т.е. принять, а дисперсию альтернативного признака принять за.

Тогда средняя, ошибка выборки выразится формулой

Предельная величина разности между частостью и долей называется предельной ошибкой выборки .

О величине предельной ошибки можно судить с некоторой вероятностью, которая зависит от множителя, поскольку.

Зная выборочную долю признака и предельную ошибку выборки, можно определить границы, в которых заключена генеральная доля:

Результаты выборочного статистического исследования во многом зависят от уровня подготовки процесса наблюдения.

Под уровнем подготовки в данном случае подразумевается соблюдение определенных правил и принципов проектирования выборочного обследования. Важнейшим элементом проектирования является составление организационного плана выборочного наблюдения.

В организационный план включаются следующие вопросы:

  • 1. Постановка цели и задачи наблюдения.
  • 2. Определение границ объекта исследования.
  • 3. Отработка программы наблюдения (составление анкеты, опросного листа, формы отчета и т.д.) и разработка ее материалов.
  • 4. Определение процедуры отбора, способа отбора и объема выборки.
  • 5. Подготовка кадров для проведения наблюдения, размножение формуляров, инструктивных документов и др.
  • 6. Расчет выборочных характеристик и определение ошибок выборки.
  • 7. Распространение выборочных данных на всю совокупность.
  • 2. Основные способы формирования выборочной cовокупности

Достоверность рассчитанных по выборочным данным характеристик в значительной степени определяется репрезентативностью выборочной совокупности, которая, в свою очередь, зависит от способа отбора единиц из генеральной совокупности.

По виду различают индивидуальный, групповой и комбинированный отбор.

При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе - группы единиц, а комбинированный отбор предполагает сочетание группового и индивидуального отбора.

Метод отбора определяет возможность продолжения участия отобранной единицы в процедуре отбора.

Бесповторным называется такой отбор, при котором попавшая в выборку единица не возвращается в совокупность, из которой осуществляется дальнейший отбор.

При повторном отборе попавшая в выборку единица после регистрации наблюдаемых признаков возвращается в исходную (генеральную) совокупность для участия в дальнейшей процедуре отбора.

При этом методе объем генеральной совокупности остается неизменным, что обусловливает постоянную вероятность попадания в выборку всех единиц совокупности.

В практике выборочных обследований наибольшее распространение получи ли следующие выборки:

собственно-случайная;

механическая;

типическая;

серийная;

комбинированная.

Собственно-случайная выборка

При такой выборке отбор единиц из генеральной совокупности производится наугад или наудачу, без каких-либо элементов системности. При этом все без исключения единицы генеральной совокупности должны иметь абсолютно равные шансы попадания в выборку.

Технически собственно-случайный отбор проводят методом жеребьевки или по таблице случайных чисел.

Собственно-случайный отбор может быть как повторным, так и бесповторным.

Предположим, в результате выборочного обследования жилищных условий жителей города, осуществленного на основе собственно-случайной повторной выборки, получен следующий ряд распределения (табл. 2.1 ).

Таблица 2.1 Результаты выборочного обследования жилищных условий жителей города

Для определения средней ошибки выборки необходимо рассчитать выборочную среднюю величину и дисперсию изучаемого признака (т. 2.2).

Таблица 2.2 Расчет средней общей (полезной) площади жилищ, приходящейся на 1 человека, и дисперсии

Общая (полезная) площадь жилищ, приходится на 1 чел, м 2

Число жителей f

Середина интервала x

  • 5,0-10,0
  • 10,0-15,0
  • 15,0-20,0
  • 20,0-25,0
  • 25,0-30,0
  • 30,0 и более
  • 712,5
  • 2550,0
  • 4725,0
  • 4725,0
  • 3575,0
  • 2697,5
  • 5343,75
  • 31875,0
  • 82687,5
  • 106312,5
  • 98312,5
  • 87668,75

Средняя ошибка выборки составит:

Определим предельную ошибку выборки с вероятностью:

Установим границы генеральной средней:

Таким образом, на основании проведенного выборочного обследования с вероятностью можно заключить, что средний размер общей площади, приходящейся на одного человека, в целом по городу лежит в пределах от до.

При расчете средней ошибки собственно-случайной бесповторной выборки необходимо учитывать поправку на бесповторность отбора:

Если предположить, что представленные в табл. 2.1 данные являются результатом бесповторного отбора (генеральная совокупность включает единиц), то средняя ошибка выборки будет несколько меньше:

Соответственно уменьшится и предельная ошибка выборки, что вызовет сужение границ генеральной средней.

Воспользуемся еще раз данными табл. 2.1 для того, чтобы определить границы доли лиц, обеспеченность жильем которых составляет менее.

Согласно результатам обследования, численность таких лиц составила человека.

Определим выборочную долю и дисперсию:

Рассчитаем среднюю ошибку выборки:

Предельная ошибка выборки с заданной вероятностью составит:

Определим границы генеральной доли:

Следовательно, с вероятностью можно утверждать, что доля лиц, имеющих менее на человека, в целом по городу находится в пределах от до.

Механическая выборка

Механическая выборка применяется в случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в расположении единиц (списки избирателей, телефонные номера респондентов, номера домов и квартир и т.п.).

Для проведения механической выборки устанавливается пропорция отбора, которая определяется соотнесением объемов выборочной и генеральной совокупностей.

Отбор единиц осуществляется в соответствии с установленной пропорцией через равные интервалы. Например, при пропорции (выборка) отбирается каждая единица.

Генеральную совокупность при механическом отборе можно ранжировать или упорядочить по величине изучаемого или коррелирующего с ним признака, что позволит повысить репрезентативность выборки.

Однако в этом случае возрастает опасность систематической ошибки, связанной с занижением значения изучаемого признака (если из каждого интервала регистрируется первое значение) или его завышением (если из каждого интервала регистрируется последнее значение).

Целесообразно отбор начинать с середины первого интервала, например при выборке отобрать и с таким же интервалом последующие единицы

Для определения средней ошибки механической выборки используется формула средней ошибки при собственно-случайном бесповторном отборе.

Типический отбор

Этот способ отбора используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько типических групп.

Типический отбор предполагает выборку единиц из каждой типической группы собственно-случайным или механическим способом.

Отбор единиц в типическую выборку может быть организован либо пропорционально объему типических групп, либо пропорционально внутригрупповой дифференциации признака.

При выборке, пропорциональной объему типических групп, число единиц, подлежащих отбору из каждой группы, определяется следующим образом:

где - объем группы;

Объем выборки из группы.

Средняя ошибка такой выборки находится по формулам:

- (повторный отбор); (2.1)

- (бесповторный отбор), (2.2)

где - средняя из внутригрупповых дисперсий.

При выборке, пропорциональной дифференциации признака, число наблюдений по каждой группе рассчитывается по формуле:

где - среднее квадратическое отклонение признака в группе.

Средняя ошибка такого отбора определяется следующим образом:

- (повторный отбор), (2.4)

- (бесповторный отбор). (2.5)

Рассмотрим оба варианта типической выборки на условном примере.

Предположим, бесповторный типический отбор рабочих предприятия, пропорциональный размерам цехов, проведенный с целью оценки потерь из-за временной нетрудоспособности привел к следующим результатам (табл. 2.3 ).

Таблица 2.3 Результаты обследования рабочих предприятия

Определим среднюю и предельную ошибки выборки (с вероятностью):

Рассчитаем выборочную среднюю:

С вероятностью можно сделать вывод, что среднее число дней временной нетрудоспособности одного рабочего в целом по предприятию находится в пределах:

Воспользуемся полученными внутригрупповыми дисперсиями для проведения отбора, пропорционального дифференциации признака.

Определим необходимый объем выборки по каждому цеху:

С учетом полученных значений рассчитаем среднюю ошибку выборки:

В данном случае средняя, а, следовательно, и предельная ошибки будут несколько меньше, что отразится и на границах генеральной средней.

Серийный отбор

Данный способ отбора удобен в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. В качестве таких серий могут рассматриваться упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и другие объединения.

Сущность серийной выборки заключается в собственно случайном либо механическом отборе серий, внутри который производится сплошное обследование единиц.

Средняя ошибка серийной выборки (при отборе равновеликих серий) зависит от величины только межгрупповой (межсерийной) дисперсии и определяется по следующим формулам:

(повторный отбор); (2.6)

(бесповторный отбор), (2.7)

где - число отобранных серий;

Общее число серий.

Межгрупповую дисперсию вычисляют следующим образом:

где - средняя серии;

Общая средняя по всей выборочной совокупности.

Комбинированный отбор

В практике статистических обследований помимо рассмотренных выше способов отбора применяется и их комбинация.

Можно комбинировать типическую и серийную выборки, когда серии отбираются в установленном порядке из нескольких типических групп. Возможна также комбинация серийного и собственно-случайного отборов, при которой отдельное единицы отбираются внутри серии в собственно-случайном порядке.

Ошибка такой выборки определяется ступенчатостью отбора.

Многоступенчатым называется отбор, при котором из генеральной совокупности сначала извлекаются укрупненные группы, потом - более мелкие и так до тех пор, пока не будут отобраны те единицы, которые подвергаются обследованию.

Многофазная выборка предполагает сохранение одной и той же единицы отбора на всех этапах его проведения, при этом отобранные на каждой стадии единицы подвергаются обследованию (на каждой последующей стадии отбора программа обследования расширяется).

Исходя из вышеизложенного, приведем формулы предельной ошибки выборки для наиболее часто используемых на практике способов формирования выборочной совокупности (табл. 2.4 ).

Таблица 2.4 Предельная ошибка выборки для некоторых способов формирования выборочной совокупности

  • 7. Базовая аппаратная конфигурация персонального компьютера. Системный блок: понятия, виды. Внутреннее устройство системного блока.
  • 8.Метеринская плата компьютера: понятие, назначение, хар-ка, логические схемы.
  • 9.Структура и основная хар-ка процессора как основной микросхемы комп-ра.Связь процессора с др устройствами. Компоненты магистрали комп-ра.
  • 10. Внутренняя память компьютера: оперативная и кэш-память, микросхема пзу и система bios, энергонезависимая память cmos. Носители и устройства внешней памяти.
  • 11. Конструкция, принцип действия, основные параметры жесткого диска.
  • 1. Протокол передачи данных.
  • 12. Классификация устройств ввода и вывода информации, порты комп-ра для подключения периферийных устройств.
  • 13. Виды и основные пользовательские характеристики современных мониторов.
  • 14. Принтеры: понятие, назначение, виды, принципы работы.
  • 15. Клавиатура: группы клавиш, назначение клавиш.
  • 16. Виды, принцип действия, регулируемые параметры мыши. Доп. Устройства комп-ра: модем, тв-тюнер, звуковая карта.
  • 17. Понятие и структура программного обеспечения персонального компьютера.
  • 18. Назначение, типы, ведущие функции операционной системы пк. Основные компоненты операционной системы: ядро, интерфейс, драйверы устройств.
  • 19. Понятие и типы файлов. Файловая структура комп-ра. Обслуживание файловой структуры персонального комп-ра.
  • 20. Прикладное по: понятие, значение, структура, виды, программы.
  • 21. Назначение и виды языков программирования. Составные компоненты системы программирования.
  • 22. Назначение и классификация служебных программных средств.
  • 23. Компьютерный вирус. Признаки вирусного заражения.
  • 24. Классификация вирусов.
  • 25. Виды антивирусных программ. Меры по защите эвм от вирусов.
  • 26. Понятие архивации. Методы и форматы сжатия информации. Основные идеи алгоритмов rle, Лемпеля-Зива, Хаффмана.
  • 27. База данных. Классификация. Модели баз данных. Достоинства и недостатки.
  • 28. Субд. Виды. Основные принципы создания.
  • 29. Автоматизированное рабочее место мед специалиста. Назначение, основные требования и принципы разработки.
  • 30. Совокупность решаемых с помощью арм задач и основные направления применения автоматизированных рабочих мест мед персоналом.
  • 31. Структурные компоненты и функциональные модули автоматизированных рабочих мест медицинских работников. Классификация автоматизированных рабочих мест сотрудников медицинских организаций.
  • 32. Знания как основа функционирования экспертных систем. Понятие, свойства и виды знаний.
  • 33. Экспертная система: понятие, назначение и структурные компоненты. Основные этапы разработки экспертной системы
  • 34. Базовые функции экспертных систем и требования к работе медицинских экспертных систем.
  • 35. Режимы функционирования и виды современных экспертных систем. Экспертная система и специалист: сравнительные преимущества и недостатки
  • 36. Понятие компьютерной сети. Основные требования, предъявляемые к современным компьютерным сетям
  • 37. Основные компоненты компьютерной сети
  • 38. Классификация компьютерных сетей. Топология кс. Виды. Преимущества и недостатки.
  • 39. Глобальная сеть Интернет. История создания. Общая характеристика Интернет. Принцип коммутации пакетов
  • 40. Протокол сети интернет. Возможности сети. «Всемирная паутина». Язык html.
  • 41. Телемедицина, задачи телемедицины. История развития. Основные направления телемедицины
  • 42. Предмет, цели и задачи медицинской информатики. Виды медицинской информации
  • 43. Классификация медицинских информационных систем (мис). Задачи мис
  • 44. Информационные технологии. Информационные системы
  • 45. Виды технологических информационных медицинских систем. Уровни развития мис
  • 46. История развития эвм. Поколения эвм. Современный этап развития вычислительной техники и ее перспективы
  • 47. Математическая статистика ее методы. Основные этапы статистической работы.
  • 48. Генеральная совокупность и выборка. Способы формирования выборки
  • 49. Вариационный ряд и его наглядное изображение. Построение гистограммы (алгоритм)
  • 50. Характеристики статистического распределения: характеристики положения; характеристики формы; характеристики рассеяния.
  • 51. Оценка параметров генеральной совокупности. Точечная и интервальная оценка. Доверительный интервал. Уровень значимости
  • 52. Дисперсионный анализ. Градации факторов и анализ. Простейшая схема варьирование при различий по одному фактору
  • 53. Дисперсионный анализ. Рабочая формула для вычисления средних квадратов
  • 54. Вычисление f-критерия для определения влияния изучаемого фактора. Количественная оценка влияния отдельных факторов.
  • 55. Понятие корреляции. Функциональная и корреляционная зависимости. Графики рассеяния.
  • 56. Коэффициент корреляции и его свойства.
  • 57. Регрессионный анализ. Линейная регрессия
  • 58. Ряды динамики. Понятие временного ряда. Виды ряда. Определение тренда
  • 59. Выравнивание динамических рядов: метод скользящей средней
  • 60. Выравнивание динамических рядов: метод наименьших квадратов
  • 61. Выравнивание динамических рядов: метод удлинения периодов
  • 62. Анализ динамических рядов. Хронологическая средняя. Абсолютный прирост ряда. Коэффициент роста
  • 63. Анализ динамических рядов. Хронологическая средняя. Темп роста. Темп прироста
  • 47. Математическая статистика ее методы. Основные этапы статистической работы.

    Математическая статистика - это научная дисциплина, предметом изучения которой является разработка методов регистрации, описания и анализа статистических экспериментальных данных, полученных в результате наблюдений массовых случайных явлений.

    Основными задачами математической статистики являются:

      определение закона распределения случайной величины или системы случайных величин;

      проверка правдоподобия гипотез;

      определение неизвестных параметров распределения.

    Все методы математической статистики основаны на теории вероятностей. Однако в силу специфичности решаемых задач математическая статистика выделяется из теории вероятностей в самостоятельную область. Если в теории вероятностей считается заданной модель явления и производится расчет возможного реального течения этого явления (рис.1), то в математической статистике подбирается подходящая теоретико-вероятностная модель, исходя из статистических данных (рис.2).

    Рис.1. Общая задача теории вероятностей

    Рис.2. Общая задача математической статистики

    Как научная дисциплина математическая статистика развивалась вместе с теорией вероятностей. Математический аппарат этой науки построен во второй половине XIX века.

    Основные этапы статистической работы.

    Любое статистическое исследование в себя 3 основных этапа:

      сбор – это массовое научно-организованное наблюдение, посредством которого получают первичную информацию об отдельных фактах (единицах) изучаемого явления. Данный статистический учет большого числа или всех входящих в состав изучаемого явления единиц является информационной базой для статистических обобщений, для формулирования выводов об изучаемом явлении или процессе;

      группировка и сводка. Под этими данными понимают распределение множества фактов (единиц) на однородные группы и подгруппы, итоговый подсчет по каждой группе и подгруппе и оформление полученных итогов в виде статистической таблицы;

      обработка и анализ. Статистический анализ заключает стадию статистического исследования. Он содержит в себе обработку статистических данных, которые были получены при сводке, интерпретацию полученных результатов с целью получения объективных выводов о состоянии изучаемого явления и о закономерностях его развития.

    48. Генеральная совокупность и выборка. Способы формирования выборки

    Генеральная совокупность (в англ. - population) - совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.

    Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность - это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, мужчины 30-50 лет, использующие бритву определённой марки не реже раза в неделю, и имеющие доход не ниже $100 на одного члена семьи.

    Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

    Характеристики выборки:

      Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем

      Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

    Необходимость выборки

      Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

      Существует необходимость в сборе первичной информации.

    Объём выборки

    Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30 – 35.

    Основные способы формирования выборки

    Формирование выборки прежде всего основывается на знании контура выборки, под которым понимается список всех единиц совокупности, из которого выбираются единицы выборки. Например, если в качестве совокупности рассматривать все автосервисные мастерские города Москвы, то надо иметь список таких мастерских, рассматриваемый как контур, в пределах которого формируется выборка.

    Контур выборки неизбежно содержит ошибку, называемую ошибкой контура выборки и характеризующую степень отклонения от истинных размеров совокупности. Очевидно, что не существует полно официального списка всех автосервисных мастерских г. Москвы. Исследователь должен информировать заказчика работы о размерах ошибки контура выборки.

    При формировании выборки используются вероятностные (случайные) и невероятностные (неслучайные) методы.

    Если все единицы выборки имеют известный шанс (вероятность) быть включенными в выборку, то выборка называется вероятностной. Если эта вероятность неизвестна, то выборка называется невероятностной. К сожалению, в большинстве маркетинговых исследований из-за невозможности точного определения размера совокупности не представляется возможным точно рассчитать вероятности. Поэтому термин «известная вероятность» скорее основан на использовании определенных методов формирования выборки, чем на знании точных размеров совокупности.

    Вероятностные методы включают в себя:

      простой случайный отбор;

      систематический отбор;

      кластерный отбор;

      стратифицированный отбор.

    Невероятностные методы:

      отбор на основе принципа удобства;

      отбор на основе суждений;

      формирование выборки в процессе опроса;

      формирование выборки на основе квот.

    Смысл метода отбора на основе принципа удобства заключается в том, что формирование выборки осуществляется самым удобным с позиций исследователя образом, например с позиций минимальных затрат времени и усилий, с позиций доступности респондентов. Выбор места исследования и состава выборки производится субъективным образом, например, опрос покупателей осуществляется в магазине, ближайшем к месту жительства исследователя. Очевидно, что многие представители совокупности не принимают участия в опросе.

    Формирование выборки на основе суждения основано на использовании мнения квалифицированных специалистов, экспертов относительно состава выборки. На основе такого подхода часто формируется состав фокус-группы.

    Формирование выборки в процессе опроса основано на расширении числа опрашиваемых исходя из предложений респондентов, которые уже приняли участие в обследовании. Первоначально исследователь формирует выборку намного меньшую, чем требуется для исследования, затем она по мере проведения расширяется.

    Формирование выборки на основе квот (квотный отбор) предполагает предварительное, исходя из целей исследования, определение численности групп респондентов, отвечающих определенным требованиям (признакам). Например, в целях исследования было принято решение, что в универмаге должно быть опрошено пятьдесят мужчин и пятьдесят женщин. Интервьюер проводит опрос, пока не выберет установленную квоту.

    Данным, полученным в результате эксперимента, свойственна изменчивость, которая может быть вызвана случайной ошибкой: погрешностью измерительного прибора, неоднородностью образцов и т.д. После проведения большого количества однородных данных экспериментатору необходимо их обработать для извлечения как можно более точной информации о рассматриваемой величине. Для обработки больших массивов данных измерений, наблюдений и т.п., которые могут быть получены при проведении эксперимента, удобно применять методы математической статистики .

    Математическая статистика неразрывно связана с теорией вероятностей, но между этими науками есть существенное различие. Теория вероятностей использует уже известные распределения случайных величин , на основе которых рассчитываются вероятности событий, математическое ожидание т.д. Задача математической статистики – получить как можно более достоверную информацию о распределении случайной величины на основе экспериментальных данных.

    Типичные направления математической статистики:

    • теория выборок;
    • теория оценок;
    • проверка статистических гипотез;
    • регрессионный анализ;
    • дисперсионный анализ.

    Методы математической статистики

    Методы оценки и проверки гипотез основываются на вероятностных и гиперслучайных моделях происхождения данных.

    Математическая статистика оценивает параметры и функции от них, которые представляют важные характеристики распределений (медиану, математическое ожидание, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используются точечные и интервальные оценки.

    Современная математическая статистика содержит большой раздел – статистический последовательный анализ , в котором допускается формирование массива наблюдений по одному массиву.

    Математическая статистика также содержит общую теорию проверки гипотез и большое количество методов для проверки конкретных гипотез (например, о симметрии распределения, о значениях параметров и характеристик, о согласии эмпирической функции распределения с заданной функцией распределения, гипотеза проверки однородности (совпадение характеристик или функций распределения в двух выборках) и др.).

    Проведением выборочных обследований , связанных с построением адекватных методов оценки и проверки гипотез, со свойствами разных схем организации выборок, занимается раздел математической статистики, имеющий большое значение. Методы математической статистики непосредственно использует следующие основные понятия.

    Выборка

    Определение 1

    Выборкой называются данные, которые получены при проведении эксперимента.

    Например, результаты дальности полета пули при выстреле одного и того же или группы однотипных орудий.

    Эмпирическая функция распределения

    Замечание 1

    Функция распределения дает возможность выразить все важнейшие характеристики случайной величины.

    В математической стаитистике существует понятие теоретической (заранее не известной) и эмпирической функции распределения.

    Эмпирическая функция определяется по данным опыта (эмпирические данные), т.е. по выборке.

    Гистограмма

    Гистограммы используются для наглядного, но довольно приближенного, представления о неизвестном распределении.

    Гистограмма представляет собой графическое изображение распределения данных.

    Для получения качественной гистограммы придерживаются следующих правил :

    • Количество элементов выборки должно быть существенно меньше объема выборки.
    • Интервалы разбиения должны содержать достаточное число элементов выборки.

    Если выборка очень большая зачастую интервал элементов выборки разбивают на одинаковые части.

    Выборочное среднее и выборочная дисперсия

    С помощью данных понятий можно получить оценку необходимых числовых характеристик неизвестного распределения, не прибегая к построению функции распределения, гистограммы и т.п.

    Математическая статистика - это раздел математики, изучающий приближенные методы сбора и анализа данных по результатам эксперимента для выявления существующих закономерностей, т.е. отыскания законов распределения случайных величин и их числовых характеристик.

    В математической статистике принято выделять два основных направления исследований :

    1. Оценка параметров генеральной совокупности.

    2. Проверка статистических гипотез (некоторых априорных предположений).

    Основными понятиями математической статистики являются: генеральная совокупность, выборка, теоретическая функция распределения.

    Генеральной совокупностью является набор всех мыслимых статистических данных при наблюдениях случайной величины.

    Х Г = {х 1 , х 2 , х 3 , …, х N , } = { х i ; i=1,N }

    Наблюдаемая случайная величина Х называется признаком или фактором выборки. Генеральная совокупность - есть статистический аналог случайной величины, ее объем N обычно велик, поэтому из нее выбирается часть данных, называемая выборочной совокупностью или просто выборкой.

    Х В = {х 1 , х 2 , х 3 , …, х n , } = { х i ; i=1,n }

    Х В Ì Х Г, n £ N

    Выборка - это совокупность случайно отобранных наблюдений (объектов) из генеральной совокупности для непосредственного изучения. Количество объектов в выборке называется объемом выборки и обозначается n. Обычно выборка составляет 5%-10% от генеральной совокупности.

    Использование выборки для построения закономерностей, которым подчинена наблюдаемая случайная величина, позволяет избежать ее сплошного (массового) наблюдения, что часто бывает ресурсоемким процессом, а то и просто невозможным.

    Например, популяция представляет собой множество индивидуумов. Изучение целой популяции трудоемко и дорого, поэтому собирают данные по выборке индивидуумов, которых считают представителями этой популяции, позволяющими сделать вывод относительно этой популяции.

    Однако, выборка обязательно должна удовлетворять условию репрезентативности , т.е. давать обоснованное представление о генеральной совокупности. Как сформировать репрезентативную (представительную) выборку? В идеале стремятся получить случайную (рандомизированную) выборку. Для этого составляют список всех индивидуумов в популяции и случайно их отбирают. Но иной раз затраты при составлении списка могут оказаться недопустимыми и тогда берут приемлемую выборку, например, одну клинику, больницу и исследуют всех пациентов в этой клинике с данным заболеванием.

    Каждый элемент выборки называется вариантой . Число повторений варианты в выборке называется частотой встречаемости . Величина называется относительной частотой варианты, т.е. находится как отношение абсолютной частоты варианты ко всему объему выборки. Последовательность вариант, записанных в возрастающем порядке, называется вариационным рядом .


    Рассмотрим три формы вариационного ряда: ранжированный, дискретный и интервальный.

    Ранжированный ряд - это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака.

    Дискретный вариационный ряд представляет собой таблицу, состоящую из граф, либо строк: конкретного значения признака х i и абсолютной частоты n i (или относительной частоты ω i) проявления i-го значения признака x.

    Примером вариационного ряда служит таблица

    Написать распределение относительных частот.

    Решение : Найдем относительные частоты. Для этого разделим частоты на объем выборки:

    Распределение относительных частот имеет вид:

    0,15 0,5 0,35

    Контроль: 0,15 + 0,5 + 0,35 = 1.

    Дискретный ряд можно изобразить графически. В прямоугольной декартовой системе координат отмечаются точки с координатами () или (), которые соединяются прямыми линиями. Такую ломаную называют полигоном частот.

    Построить дискретный вариационный ряд (ДВР) и начертить полигон распределения 45 абитуриентов по числу баллов, полученных ими на приемных экзаменах:

    39 41 40 42 41 40 42 44 40 43 42 41 43 39 42 41 42 39 41 37 43 41 38 43 42 41 40 41 38 44 40 39 41 40 42 40 41 42 40 43 38 39 41 41 42.

    Решение : Для построения вариационного ряда различные значения признака x (варианты) располагаем в порядке их возрастания и под каждым из этих значений записываем его частоту.

    Построим полигон этого распределения:

    Рис. 13.1. Полигон частот

    Интервальный вариационный ряд используется при большом числе наблюдений. Для построения такого ряда надо выбрать число интервалов признака и установить длину интервала. При большом числе групп величина интервала будет минимальна. Число групп в вариационном ряду можно найти по формуле Стерджеса : (k-число групп, n - объем выборки), а ширину интервала -

    где - максимальное; - минимальное значения вариант, а их разность R носит название размаха вариации .

    Исследуется выборка из 100 человек из совокупности всех студентов медицинского ВУЗа.

    Решение : Рассчитаем число групп: . Таким образом, для составления интервального ряда данную выборку лучше разбить на 7 или 8 групп. Совокупность групп, на которые разбиваются результаты наблюдений и частот получения результатов наблюдений в каждой группе, называют статистической совокупностью .

    Для наглядного представления статистического распределения пользуются гистограммой.

    Гистограмма частот - это ступенчатая фигура, состоящая из смежных прямоугольников, построенных на одной прямой, основания которых одинаковы и равны ширине интервала, а высота равна или частоте попадания в интервал или относительной частоте ω i .

    Наблюдения за числом частиц, попавших в счетчик Гейгера, в течение минуты дали следующие результаты:

    21 30 39 31 42 34 36 30 28 30 33 24 31 40 31 33 31 27 31 45 31 34 27 30 48 30 28 30 33 46 43 30 33 28 31 27 31 36 51 34 31 36 34 37 28 30 39 31 42 37.

    Построить по этим данным интервальный вариационный ряд с равными интервалами (I интервал 20-24; II интервал 24-28 и т.д.) и начертить гистограмму.

    Решение : n = 50

    Гистограмма этого распределения имеет вид:

    Рис. 13.2. Гистограмма распределения

    Варианты заданий

    № 13.1. Через каждый час измерялось напряжение тока в электросети. При этом были получены следующие значения (В):

    227 219 215 230 232 223 220 222 218 219 222 221 227 226 226 209 211 215 218 220 216 220 220 221 225 224 212 217 219 220.

    Построить статистическое распределение и начертить полигон.

    № 13.2. Наблюдения за сахаром крови у 50 человек дали такие результаты:

    3.94 3.84 3.86 4.06 3.67 3.97 3.76 3.61 3.96 4.04

    3.82 3.94 3.98 3.57 3.87 4.07 3.99 3.69 3.76 3.71

    3.81 3.71 4.16 3.76 4.00 3.46 4.08 3.88 4.01 3.93

    3.92 3.89 4.02 4.17 3.72 4.09 3.78 4.02 3.73 3.52

    3.91 3.62 4.18 4.26 4.03 4.14 3.72 4.33 3.82 4.03

    Построить по этим данным интервальный вариационный ряд с равными интервалами (I - 3.45-3.55; II - 3.55-3.65 и т. д.) и изобразить его графически, начертить гистограмму.

    № 13.3. Построить полигон частот распределения скорости оседания эритроцитов (СОЭ) у 100 человек.